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EDITOR'S PREFACE

THI1s BOOK was commenced in 1939. The actual writing was
completed in 1941 and the first proofs were available during the

next year. Owing however to war conditions and pressure of other\
work the editing teok a considerable time and it was not untilthe/

summer of 1945 that there seemed to be any prospect of ‘edrly
publication. ON N

Of the book itself T can only say that it supplies @y long -felt
want. Mr Tetley’s knowledge of that part of acﬁua\ral statistics
covered by this volume is far-reaching and as fix\a¥ the subject-
matter is concerned my editorial functions haw&tbeen reduced to a
minimum. \"

The task of editing the book has bu,n.“x Jpleasurable one. On
many occasions it has been the means of alleviating the monotony
of war-time dutics. Many hours whigh would otherwise have been
weary have been agreeably spent | bth on reading the manuscript
and correcting the proofs www_dbl aulibrary . org.in
. H.F.

"4



AUTHOR’S PREFACE TO THE
SECOND EDITION

MisTakrs in the first edition have been corrected and the
opportunity has been taken to re-write certain sections, particularly
in Chapter 1v.

In actuarial work the probabilities involved, such as those of QO
death or falling sick, are usually very small, while the numbers, -
exposed to risk are large. The Poisson distribution is thepefore
particularly appropriate in such work, and a demonstration of its
derivation from the binomial has now been included in plate of one
of the developments of the normal approximation, N

Although only the theory of large samples is Cohsidered it was
felt that the notion of biased and unbiased estinia}eé was sufficiently
fundamental to require a brief explanation,'zﬁld' 2 section has been
included in Chapter Iv. QO v .

“Pable T of the Appendix based on tienormal curve was formerly
taken from Hardy’s book, but ig~,6r’der to secure uniformity with
the projected new text-bo@hgvamﬁi-aﬁhm&r@@l&gqhion of Actuarial
Tables, it has been replaced’by the more usual type of table which
will appear in the new.\gglbﬁcations.

The author is glachof this opportunity of thanking all those who
have assisted him l\jy helpful criticism and by drawing attention to
mistakes in thp{arliér edition.

¢ H T



AUTHOR’S PREFACE 10 THE
FIRST EDITION

As THE TITLE implies, no attempt has been made to producy i
statistics text-book for general use. Many cxcellent works of tli=
kind are already in existence (some are mentioned in the Bihlio-
graphics), but, until he has qualified, the actuary rarely has tinwe
his disposal to make a thorough study of the subject of statistice,>
1t is hoped that this book will give the reader a grasp of the finda-
mental ideas of statistics, which will not only enable him to@xhimine
critically the various tables with which he has to deal, }ﬁf.’; will help
him to develop a ‘statistical sense’ so that he can takga ively anc

< intelligent interest in developments outside, as \\%}1 as inside. o
actuarial world, \

Some subjects have inevitably been cb};!t with in a rather
superficial way and much interesting Qsﬁa}crial has had 1o be ox-
cluded from the book, which may, éch'seqt.tently present an un-
balanced appearance to the profajs’s:{r)nzll statistician. Few reader-
will be commﬁ,dhﬂiﬂfmmﬁy.gﬁéﬁﬁict their statistical studics to this
volume, but the introduction which it provides should enable more
ambitious works to be réad with greater profit.

Mathematics has 1{%&:5‘1 given rather morve prominence than i
usual in statisticdl wbrks, because it has been found that actuarial
students ﬁndQ t\h{er form of treaiment interesting and stimulating.
The chaptess jon graduation reflect the theoretical complexity of
the m¢thods rather than their practical importance. Thus, graduu-
tion Y ‘Summation formula, because of its complicated analytical
ha\aq, has required much fuller treatient than the graphic method.

~¥eltich is more important from the practical point of view.

Chapter T shonld help the student to revise what he has learnedd
in the Statistics chapters of Mathematics Jor Actuavial Student.
by extending to grouped data the technique he has alreadyv used
for finding means, standard deviations and similar measurcs of
tocation and dispersion. Chapter 11 deals with the two standar
frequency distributions of most Importance to actuaries, but the



AUTHEOR'S PREFACE XV

Paisson distribution has been excluded both in the interests of
brevity and because it proves rather a “blind alley’ in the present
state of our knowledge. At the end of Chapter 111 some elementary
ideas of non-linear regression and spuricus correlation have been
introduced because of their fundamental importance, although a
satisfactory treatment of these subjects is quite uutmde the scope
of the book,

Chapter IV 1s probably the most important because it is not until
he understands the way in which sample results can be nsed that, >
a student grasps the idea of statistical inference’ which unt;lg*lu:s
all modern scientific methods. O

1t may seem somewhat illogical to explain tests of 3 gmduatlon
before the methods of graduation themselves, but ¢ Tmptet’ Yitoa
large extent develops from the sampling t(,chmquc“r}a%rﬂnd in the
previous chapter, while the process of graduabidn becomes more
intelligible when the criteria of 5m00thnesqxa‘1}d goodiess of fit are
already appreciated. The outline of the y? ﬁmt is incomplete but the
choice scemed to lie between dealing)with it in this way and
omitting all reference to 1. A thofnugh treatment would involve
a description of contingency taBles and the multivariate normal
frequency distribution, w moh 3 would 15}(‘(‘3‘1;1,%" increased the
scope of the whole book. z

In each of the erdll}'zn}_} (,ha}‘u(,l"i standard tables have been used
as examples of the Théthods described, and it is hoped that the
student may thus' Be saved a good deal ‘of reference to original
papers and meworanda which he has previously been obliged to
consult. :

’l'h(':;k\{&ok' has grown out of the lesson notes prepared by the
nitorsyfor the appropriate section of the examinations of the
,lnst‘ttute of Actuarics and the Facultv of Actuaries. The author

\pcﬁucula.r]v wishes 10 acknowledge his indebtedness to Messrs
A. T. Haynes and O. C. ]. Klagge, who prepared the original
set of notes when the Actuarial "Tuition Service was inaugurated,
and thus provided a framework, which with some modification of
detail has remained virtually unchanged ever since. Mr H, W.
Haycocks has also assisted greatly by informed criticism and many

valuable suggestions.



K AUTHOR’S PREFACE

Finally my grateful thanks are due to Mr H. Freeman, who has
not only helped to ensure a logical development of the subject from
the chapters in Mathematics for Actuarial Students, but has co-
ordinated the two parts of this present book at a time when con-
ditions made it impossible for the authors to meet, The book also
owes much to his experience and care in reading and checking the

proofs and in seeing them through the press, . {\
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INTRODUCTION

THE TMPORTANCE OF STATISTICS
TO THE ACTUARY

In studving statistics the student is uswally handicapped by lack of
practival background and is puzzled by the apparent uselessness of
the scienee inactuariat work. Lo hoped that the Tollowing 11'!11'1[]‘\:3\'
will be of assistance in clearing up his dithealtios and pivinga gumr al”
wurvey of the scope of the book, '..}‘

In our connplex modern L1\1|1/len W e CONsL: mﬂ'\ g
aeross eoumerations and reconds of mi nuurmnhm\vn it they
are no moere complicated than new business retughg .nul et of
claims, Owing to the linotitions ot the ]nlm'lp i sote sort o
Classilication and grouping s altnost alwg |\,-\-‘~’\< atial in order o
redutce them to camprehensibile ilumnalnhx‘ Withont i know ledee
of statistics this chsstfication and unupmv nuay e varnied ot so
that a misleading impression s um\uu1 ar, as more reguently
haprpens, quite incorredt tlulllLl]’fﬂ‘)\ thay be made from data wlineh
have been collected sl |”"L('1‘ .1r‘1q.w clbri aulibrary ovg in

Perhaps the most unpt-r'i\u Pipect ol sttt trans the point of
view ol the actry 1-\Q\t[ Forelidslity o result< Por instanee,
a vathue of g, derivg from an “estosed to sk on en ives s,
ceteris puribis, Ic;-:\""r-::’]i Wbe than o based onca Boonadred, amd the

T iunr\ ot § .‘l.l’n{bhlll' dealt wath e Ul ipter IV enabiles us to obtain
o ICHRUTE h:t}:}nr- relative rebiabiling,

'l'his.'s]'ﬁcslinn is of partivubic imporiance iomaking a eraduarion
:uu],,fo.‘hnsidaninL{ the resnlumne values, The rates of mortdity, <i0k-
fiv

}sc until they have been graduated. This process iy e said to e

an attempt, by elimimating random errors trom e obaerved data, o

Ssrctivemient ete derived foomm obzers it are not sujtable o

arrive at the true rates which wobd be obgsed fron tdeal Jata of
unlimited extent, The eraduated rates may difer appreciably from
the ungraduated rates and the question of reiabiitty thos arises,
Clearly a rate of mortabiny based ona thonand Hees exposed o sk
should be fairly close to the estimate of the true rate .'.15 shown by

KAl ALl 1



2 INTRODUCTION

the graduated table, but if the exposed to risk is only fifty we should
not be surprised to find the graduated rate differing considerably
from the observed rate. To what extent are we justified in departing
from the observed data and functions based on them in derving
the graduated values? 'T'o answer this question we again need to
understand the Theory of Sampling.

Chapters I and IT are concerned with general statistics and deal
in somewhat greater detail with matters which the studentwill
already bave met in Mathematics for Actuarial Students. Chdpyr 111
on Correlation is included chiefly for the sake of complepencss, as
this subject is one more for the economist and th\c&gﬁrofessional

b2

statistician than for the actuary, L)
b 4
N
o
&
(“‘x
N V'
L >
« N\
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’g \‘«‘
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&N
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CHAPTER 1

CONTINUCUS AND DISCONTINUOUS
VARIABLES., GROUPED DATA

{, Attributes and variables,

Defore data derived from observations and measurements are of
any practical use they have to be reduced to manageable proportiogs,
by classification and usually by grouping. The word ““statistic ‘*’\'
in fact usually restricted to “arranged or classified factse Such
arrangement or classification can be made only with rcfe1enu. to
some factor which varies from individual to 1nd1vufiual and is
capable of assessment. When this factor is capable, Q.Nheaaun,ment
c.g. height, age, sum assured, etc.,, it is called aNuriable and may
be continuous cr discontinuous, N

Continucus and discontinuous variables. are- constantly eccurring
in the mathematical work with which he student has previously
had to deal and the words are used 4y the same sense in statistics.
The phrase “discrete variation” 48, dlso fairly common instead of

“discontinuous variation” T Statistics relating to housing con-
ditions the number of rooﬁ“fsw 1% dal?{aflrl'fgb?‘ﬁn% Belfture and is an
example of discrete variation, since only integers are permissible.

When the factor usﬁsgkfor classification is not capable of measure-
ment it is called af\\atiribute. Typical examples of attribates are
nationality, clags of poh cy, colour of eyes,

In this bogk we shall be concerncd chiefly with variables, and
when this §h0ry has been mastered the student who is interested
strould, ﬁ% little difficulty in the statistics of attributes, although a
dnfe(ent technique has to be developed,

‘% Contmuous and discontinuous variables.

When the variable is discontinuous the data are automatically
divided into watertight compartments, although grouping may be
used to rednce the statistics to more manageable proportions. For
Instance, if the results of a School Certificate examination were to
be tabulated to show for a particular subject how many candidates
obtained o, 1, 2, ... up to 100 marks, the discontinuous variable

1-2



4 STATISTICS

(marks) would itself divide the data into 101 separate divisions
which might be later aggregated into groups of five or ten marks
together,* When the variable is,continuous, however, the data are
necessarily grouped, although this may not be obvious from the
way in which they arc published. For instance, an office will have
tabulated the numbers of whole-life with profit policies on lives
aged 18, 19, 20, ..., and although this may appear to be an example
of discontinuous variation the lives are actually grouped, the
commonest method being to combinc all lives who have a_bickh-
day between the 1st July of one year and the 3oth June of lﬁé"x\lcxt.
Thus, those born on 1st July 1908 or 30th June 1509 o any intcr-
mediate date would be grouped and treated as aged 32 on 3rst
December 1940. R4

It is usual in classifying data involving a caatifiuous variable to
use values of this variable at equal intervalssgithat the frequencies
in the various groups are comparable. THe‘interval used for classi-
fication is termed the class-interzal. ‘Whe’data so classified are said
to form a frequency distribution with equal class intervals.

3. Histograms and frequei'{cy: Curves.
Where Ww‘f&ﬁﬁﬁﬂ%ﬁr‘f}iﬁ?jﬁf-ﬁ we know the frequencies with
which the values occur{@rd can represent these frequencies by a
serics of points or Qggi.séries of ordinates as shown in Fig. 7, p. 256
of Mathematics far Actuarial Students, Part I1, When the vuriable
is continuoushbwever, the data are grouped and we know only
the frequg{cér with which values between x, and x,, say, occur.
. An ordimfe at the mid-point between x, and ¥y 18 Mot a very satis-
factgr)g vay of representing the frequency, and the most usual way
ig,\,tjq’erect a rectangle with base from #, to x, and area proportionate
,\ftqthe frequency. If the class-interval is constant it is of course
‘immaterial whether we regard the heights or the areas of the
rectangles as representing the frequencies, but the methad can be
used with advantage when this is not the case,
The series of rectangles is called a hastogram,
. Su.ppolse, for instance, that we are given the following frequency
distribution for the continuous variable ‘age’: ‘

. Lo
valueIr;c sgciz ca:efs a cqmnﬂ;on convention is to include the frequency for the
1 DUt not for x; in the group “&;~x,”, Similar]
bu : . ¥ the frequenc
value xp is included in “%y—w,”, Other conventions are frequen%ly ad{)pf?crdthe



HISTOGRAMS AND FREQUENCY CURVES

Number of desths

I Age last birthday

3039
40—49
50-59
6o—6g

| 70-79

8o-89
959

7,408
0,482 !
13,953 '
20,865
23,990
12,714
1,269

These results could be represented by a histogram thus: \
» 252 . — A \/
2 RS
7 20 O
E O
& 1% '
£ 10- N
g <
5 0 L\ —

A T30 40 50 60 Z0% 80 50 100
Age:.’t:

Ten vears is a fairly wide clss-interval to use and as a result
the “steps’ of the histoqra@»@r@bﬁaﬁheﬁl lasgergarticularly above

age 7o, thus producing arhitregular outline. If, instead, the class-
interval had been unity g\‘tﬁ he process of drawing scventy rectangles
would have been, lgIbD‘flOLlf: the outline would however have been
much s %moothe:\partlcularlv over the range 70-9o.

The datKF oy this range for unit intervals are given below:

* N\ Age I Deaths Age ‘ Deaths

:»\‘: - Cve— J— | -
o\ 70 2434 bfs] | 2018
\/ 71 2468 81 | 1873
72 2490 8z 72

73 2496 83 1540

74 2457 84 1361

75 2439 83 1180

76 2412 86 - 1002

77 2343 7 830

=8 ! 2255 88 1

79 | 2146 89 527
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These are actually the values of d, in the H¥ Table (Makcham
Graduation), and a histogram based on these values would involve
groups with unit class-interval, each group containing the deaths
between one integral age and the next.

We can, however, go further and draw a continuous curve repre-
senting the limiting form of the histogram when the cluss-inter-
val is indefinitcly reduced. Such a curve (known as a frequesy
curve} can be used to find the frequency with which values be-
tween any limits (%, and #,, say) will occur. "['his is r(;Ri'éSC\ntcd
by the area bounded by the curve, the x-axis and the ordinates at
%; and x,. If the ordinate of the curve is represcnteﬂ”liy Flxyitis
not correct to say that f(x) represents the frequenéy‘with which the
value x will occur. All we can say is that valtes between x and
%+ Ax will occur approximately with frequency f(x)Ax if Av is
very small. RS

It is important to realize that whenvthe variable is continuous
there is no such thing as the frequency with which a certain
value x will occur exactly, Somi¢ ‘range of values, however small,
is always understood, althq‘qéh' not always referred to explicitly.
In 2 darts match we could record the frequency with which 17
was scorcdgvbuﬂﬁfatﬁéjzméﬁ-%b‘%-f&ord the frequency with which
1ooo hens laid egg\\%{éighing 2% oz. we should have to decide what
range of valuesiwas to be included. We might decide to include
all weights ‘fyciin"z—gr 07. to 2§ oz, or from one-thousandth of an
ounce belpyto one-thousandth of an cunce above 21 0z. However
small 8 Interval was made it would sl exist and would be
depefident on the degree of accuracy with which the w
b§fc;’1rried out,

\\In the above example f(x} Ax gives the number of deaths occur-

) .
ring between ages x and x+Ax; f(x) is therefore not a {unction
of 4, but is of the form Lopig

In practice, of ctourse, we are usually able to abtain only the
grouped data and may have to estim ate as best we can the
the frequency curve which would be derived
were indefinitely reduced and the numbers of
increased. This problem will be dealt with later
may be said at once that the method adopted

cighing could

shape of
if the class-interval
groups accordingly
in this book, but it
is to start with g
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mathematical curve, the equation of which involves one or more
constants, and to determine what values of these constants give the
best “fit” to the given data. It should not be assumed, however,
that a frequency curve to fit any frequency distribution can be
arrived at by a priori reasoning from the data; a fairly good fit can
usually be obtained, however, by empirical methods,

In dealing with grouped data it is usually sufficient to assume
that the total frequency for any group is concentrated at the midé
point of that group, but in the following sections we shall deal ®ith
several instances for which such an assumption may not be\sufﬁ-
ciently accurate,

4. Moments of a frequency distribution,

If we have a discontinuous or discrete vaue\ble which takes the
values x, &g, X5, ..., &, With {reqllenCIesfl,“}%\, &, 1, (rotal frequency
N}, the rth moment about the origin i3\defined as

b G »,"” Y
m?_:)?g;z':x; e wasaan (I)

If the origin is the mean ofsthe distribution, we shall speak of
“moments about the meanvend denadsithery bagipinstead of m,.

It is a simple matter o’ convert moments about one origin to
morments about the n}&}n (=0

If we denote by’ 51 the distance x;,— A4, we have, using the above

noetation, :’.\
n ..
rth m({mmt about the origin
.\'\ 3 T »
R gy DEAT
AN Niz1
<\ -
/ == 3 (MY
. Nrf:] ( 4 {

3\? _; {f;‘*‘ﬁuf{ M roéf 20+ 0 (2)

But u,, the #th moment about the mean,

! % Crf
= —- Cife
A‘riml ¥
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Hence the above equation can be written
M=+t Mp, + 1My, +... wen{3)
Stmilarly it can be shown that
pr=t,—vMm,_ +ryMom,_,—.... ... (4)
But it will be remembered that M, the mean, is defined by

i;{x]fl +axyfat o, S b =my =M above, N

and the standard deviation, o, is defined by the equatioq\' \)

. Pt Bt B L= o\
Hence, putting ¥=1 in equation (3}, we hawja:\'\’
my=py+M; giving pu o,
ie. the first moment about the mean is 7oty
Similarly, putting =2, we have ")
my=p,+ 21”&9‘1'—'1—“};”2
= [ty +’l»‘f2,, J since ju, =o;
or fa = 02%}}32' — 2, e {5)
Therefom-,rvwﬁﬂndwﬁ@t@‘bbkégﬂib sccond moment about any con-

venient origin and\;‘{ﬁbtract the square of the distance hetween this
an.

origin and the mean. This is of course the method with which the
student is alveddy familiar.

Againa'QQinﬁg ¥=3, we have from equation (

4)
\:\ H3=m3—3£Wm2—[—3M2m1—M3
& =Wy — 31 My + 23
' :4‘(1‘1& Pa =g == g1y My -+ Om% my — 3md,

V " In the same way we can find m’s in terms of

Note. Theuseof pto denotemo
in statistical literature, and althou
arise with the foree of mortality (a
the central rate of mortality)in nu
moments of higher order

#'s from equation (3).
ments about the mean s very common
ghin theoretical work confusion may
nd similarly m, may be confused with
merical work this {g unlikely to arisc, as
than the fourth are hardly ever met with.

For continuous variables we shall dengte by

(x) the ordinate to
the frequency curve at the point x,



SHEPPARD’S ADJUSTMENTS qQ

As stated above we can assume the frequency between x and
x4 Ax to be approximately f{x)Ax.
Hence in the limit

m= L. J Of@ydy, e (6)
N 1]
where N =total frequency '
= ["ryas,
0 .

8. Sheppard’s adjustments. & \.

If we assume the total frequency of any group to be concantrated
at the mid-point of that group, errors arise in the calcula{non of
some of the moments. A method of making adJustme:us 1n. certain

circumstances is due to Dr W. F. Sheppard.
Let us consider a group for which the vana_bl&ljes between

x;-—}—z and xf—é-;-i (class-int‘f}\;él 7).
2 2 NV

Let the frequency curve stretch frqm'l'ac Sato x=> and, as before,
let the ordinate at the point » be f(#)»
The frue rth moment m, is the:ﬂ'z
\»\: dbraulibrary org.in

N f x f () (~ = total frequency).

The approxiz nate'xtQh\moment obtained by assuming the total
frequency for eacli’gtoup to be concentrated at the mid-point is
given by an expyession of the form

\V nig

\J "’ I »
& =S| fta)ds, e ()
where\the summation embraces alI groups.
\ﬁy“l aylor’s theorem,
,-&DZ =33
Cflyt )= {1 +zD+ _3"1_+ ...}f(x,),
_d
where D= &,
riz. jx
oL Flrayds=hf() i)+ LI
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Hence, from (7),

Zaf fle{x)+. :‘

(”O

[kzm () + —Zx; 1 ()

Tt will be remembered that the Euler-Maclaurin expansion

b
eXpresses [ f(x)dx in terms of Zf(x) at intervals of £ and teyms

v &
involving the values of f(x) and its derivatives at the limits g ahd b.
If the frequency curve has contact of a high order with tfh‘e} uxis

at both ends—i.c. if f{x) and its first few derivatives aro.-scm at the
N

4

limits x =« and x=>}5--then

-~

B2y f(x) = J & f (%} day \ \

EROR { f%) .

WOW W clh;baul par y 017g in

Y, —Lj 2\ \c)—i— f“( 1920 F () t:I dx.
\\

The second term can be integrated by’ parts as follows:

l

1 B

| \fﬂ(«c) | @] -2 [ @
\ ®

R\ R, . f(r—])k

24’\?["xf () = If(x)] 24N
O i

N\ Since f(x) and its derivatives vanish at both limits this reduces

to the last term.

K2 () dx

w

i
Similarly, the term Nj we— f "{x)dx can be transformed into

1920

Tr—1)(r—2){r~3) At
Igzczﬂ\! d J ¥ (%) d.

the term
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Tn this way the expression for m; can be transformed to

* b k?&
= 7 I—xj—f- ~p(r—1)ar?
WL 24' }; .
+- (=1 r—2)(F~2) &L | f(x) dx
1920
i (yr—1) ke
=M, - - Ht e+ rir— 1) r=2Y(r—2Ym, 4 +...
r 24 32 1920 ( )\ )( J) T4 H
where the m's are true moments. Ko\
“w\ v 2
gl age 3 'S
Hence ey =17 O
B N
Tile = fily + ,~\
= = iz \\.
N
. +Fx‘* r AN\
Wiy =Mig1- ml \
4 'x:\\\"
4
, +)'z? +k4 O
Wy =+ — M, v
4 1T 80, )
From these we have successiv el3 Ll‘.éi%
Jr .‘,’“ A
.:;'zz_mz— — N
\www .dbraulibrary drg.in
m3=m§\\—'mi (since my=my) ;. veenn(10)
¢ \
N A2 it
mﬁl\S{mL_._m:‘_l_ "'r._.__
N 2 240 )

For moménts about the mean, u, and uy; need no correction
( H= lu,l‘ﬂ-h} g0 that:

2 ~

A ‘;,f_‘,:p.:--—k—

/ . ~h4r’ ...... (11)
fra= a7, 2 +2;_-10

where j¢' represents a moment about the mean calculated on the
assumption that the total frequency of each group is concentrated
at the mid-point of that group.

The assumption made above that f(x) and its derivatives vanish
at @ and b means that in practice Sheppard’s adjustments should not
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be made unless the frequency dwindles to nothing at each end of
the range considered and has negligible first and second differences
as these ends are approached. (It should be borpe in mind that we
can usually only estimate the shape of the frequency curve from the
given data) -

The most commen adjustment is the deduction of A%{12 in finding
o* (= p,) and this will be made in the example to be found later in
the chapter. It is doubtful, however, whether the correctidin is
worth making unless the data are fairly extensive (say, a total fre-
quency of at least 1000}, because errors of sampling welld-0Lher-
wise be large compared with errors of grouping. by

-
7Ny
< R

6. Mede of grouped data. ."‘;.\\

Theoretically the only sound way of finding'the mode of grouped
data when the variable is continuous ig %fit a frequency curve to
the data and then find when the grgdiént dy{dx vanishes. Usually,
however, the mode is not required t0 a degree of accuracy which
would justify the considerable dabour involved.

The work can be done gf?pﬁically by drawing a histogram and
replacing, it bya lsggﬁgﬂg.l.gijgyg ifrom which the mode can be found
by inspection. Hereagdin the work is fairly heavy, but the method

_ has the great ad'%q?xtaéc that all the data are used,

(It should bésemembered, however, that there may be more than
one mode,.ed2iof which corresponds to a local maximum ordinate
on the frequency curve.)

O tij;t;‘short analytical methods perhaps the best is to fit a curve
sz form f(x)=a+bx+cx2+... to the data in the immediate
aeighbourhood of the mode. This ig usually fairly simple, but

£\

N
h
\ }

\ “unfortungtely only some of the data arc used (see LExample, para. 8)

7. Mean deviation of grouped data.

"This section relates to the mean deviation which js the average of
the absolute magnitudes of deviations from the arithmetic mean.

"The group in which the mean lies presents difficulty when the
mean deviation has to be calculated and this group is 113112{11}-’ Jeft
until the last. For convenience we shall call it the special group.
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The work is divided into three stages:

(1) Ignoring the special group the total in each group is assumed
to be concentrated at the mid-point of the group and all distances
are measured from the origin, which is, of course, chosen so as to
reduce the arithmetical work.

(2) 'I'he result is adjusted so as to allow for all distances being
measured from the mean (still ignoring the special group). i

(3) The mean deviation of the special group about the mean N
found and an appropriate adjustment made to the result of (2), \'

Denote the group frequencies by O

N/
Uy U yyqs vees U_ys Uy Hyy gy oy By Ty L

and the distances of the mid-points from the origin .b§\ v

Hyy X_pyqy wee X_gy Xy Xpy Kay oo S\l,ﬂg.

The products #_,x_,, 1% pyy, --- iy 1\k 1 Hpoq Xppq --0 T
(ignoring the special group term u;x;) are walculated and summed
treating all signs as positive. o

Py 4 N ¢
{ t

ww T:lbr‘auiibl'ar‘y_org_in
~\

In the illustration ()\gsprescnts the origin and G the position of
the mean, distant } from the origin. P; represents the mid-point
of a group withx fret]uency 1; lying to the right of O, while P,
ropresents the"sﬁld—pomt of a group with frequency u_; lying to
the left ot\Q

. OP;=x; and OP ;=x_

W"\ ha\c calculated #,x;, but to find the mean deviation about

t‘i\e imean we require
;. GPy=u;(x;— M)
=, — Mu;.

The same applies to all groups to the right of O, so that in finding
the mean deviation about the mean the total frequency for these
groups must be multiplicd by 3 and subtracted from the previous
result.
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Similarly, the term | #_,x_, | must be replaced by u_,. P_, G, 1.e. by

gy |+ Mu_

Dealing with all the groups to the left of G in the saie way we
see that we have to adjust the previous result by acding 17 x (wul
frequency in the groups to the left of O).

Summing up, we may say that the process referred to as {2) ahove
can be reduced to: 7\

multiplying the total frequency in groups to the rizht of @ by 17
and subtracting the product from the result of the fivsg l),rJ,ﬁ;E?@;; and

multiplying the total frequency in groups to the Lefi DO by M
and adding the product to the result of the first p,kﬁuf‘c:':';:’s.

'The student should investigate the problem‘}v}im G is to the
left of O and is recommended, when in dogh to malke a o rawing
similar to the above to ensure that, in ma‘k\i’lg the adjustment, the
signs are correct. ~NN

Finallyeva}’l\g_ggg‘%iﬁ}i gﬁca:ru?g%_ags?i;]o be dealt with.
As before, ¢ represénts the mean and 4R the limits of the special

group: \\

. . AG=a and GB=b.

S

If we asalfnife that the group frequency v, is evenly spread over

the ra:ngie,\“éhe frequency to the left of G will he —% .. 7, andd the
"7 a-lio "

fcéfl’l}cncy to the right will be b ..
AN atb
N\ We can now assume that the fir
" centrated at the mid-point of AG
of GB.

"I'he special group thus contributes g term

st of these frequencies is con-
and the second at the mid-point

a ) b o
PRI T s -—u;c.--=E-—' Z
a4 2 ath "2 algih)
This ie added to the previous resul, a

nd on dividing by the total
frequency we obtain the mean deviation o

about the mean,
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This seems a scmewhat laborious process, but the numerical
work is relatively simple, as will be seen in Example 2.

8. Illustrative examples.

The following example will scrve to remind the student of what
he has already learnt in Maikematics for Actuarial Students. It
does not involve a continuous variable or grouped data.

Example 1,

The table below gives a frequ(,ncv distribution of the scores returnéd
in a veterans’ golf competition for which there were 1000 cOmPpCtitQESt, «
{ \..

i Scdre Frequency Sr-_‘.nrc Frequency A \\
70 16 ) 83 AN "
71 93 77 564 &
2 181 =8 33
73 1 xgb 79 \20
=4 163 8o ’:’.\\“ 17
73 120 8uaNT 11

3
Determine the values of the mean, medifm’, mode, quartile deviation,
mean deviation and standard deviation™

To save arithmetic, measure dcwaifons from the score 74 instead of

from o or 70, N\
2 _www dbraulibrary ocgin

Value of | Cutnulutivel

variable | Frequency ii;;r&t;f (e—7a)xfe  (x—74%f frequency
x fe Y74 ()% (3) (3% e
(1) @ 4> & (4) - ® (63

. o~ paiR " |- |
7o i “\x'}é —4 64 256 16
71 ‘;\ )93 -3 279 837 109
YERN 181 -2 362 724 200
7@. SV 196 -1 190 196 | 486
N 163 o — — 649
N\ ‘75 120 X 120 ¢ 120 =69
76 83 2 166 332 Brz
77 56 3 168+ 5ogq 908
28 18 4 ! 152 608 g4H
7g 20 5 130 650 972
So 17 3] 102 612 939
81 11 5 7 539 1000
| T'otal ~ Iooo —  ~9or+913 5378 —

] : =+14 |
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Mean =74 + 1545 ="74014-
Second moment about origin (74) =$328 = 5378,
Distance of origin from mean =-014.
.. (standard deviation)® = 5378 — (-o14)?,
so that T=232,

Mean deviation from the mean. Total deviation from the origin (irre-
spective of sign)=go1+g15=1816. We must, however, measure t‘r;{n
74-014 instead of from 74.

All frequencies for values of » greater than 74 must therefyre be
multiplied by 014 and subtracted, while all frequencies for padees of x
of 74 or less must be multiplied by -014 and added. L >

We have 1816 +-014 (649 351) = 1820. j.( R

", mean deviation from the mean =120 = 1-82, -\ "

Median. As there are 1000 observations the medidn will lie between the
sooth and the 5o1st. The nearest integral vaIgg\af x satisfying this con-
dition is 74, which may be taken as the mediar.

Lower quartile. A quarter of the totd] frequency is 250, but it cannot
be said that one-quarter of the tptél frequency lics below the z30th
observation (nor for that matter dbc3 three-quarters lic above the 2515t
observation), The lower qu?.‘r'tilé lies between the 250th and 2g1st

observation and the nearest inteeral value of is[vi i ition
- n and dﬁgraufi%t:ary.org.lan va x satisfying this cond

Upper quartile, S%iﬁka}ly, the upper quartile separates the - soth and
7518t observatioand may be taken as 7.

Quartile dgv%ufion 15 therefore 'E;E =173,
O\ oo

i‘l«fos@.?fhc value of x having the greatest frequency is 73
&
Example 2.
N\ - :
~\ '1f in the above example the frequency distribution relates, not to the
\/ scores but to the ages nearest birthday of the competitors,
will there be in the values of the respective indices

Here we are dealing with a continuous variable and the data are

grouped. Thus the frequency 181 shown opposite x=72 rcally relates
to ages from 71} to v24 (class-interval unity),

what alterations

Mean. Assuming the frequencies to be concentrated at the mid-points
of the groups we find that the previous caleulations still hold good, and

the mean is 74-014 as before (no Sheppard’s adjustment is required to the
first moment).
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Standard deviation. Waking the Sheppard’sadjustment { — ¢5), we have

(standard deviation )} =5-378 — (-014)* — 7,

‘. 0=2°30 YEars.

Mean deviation from the mean. Ignoring the special group (733—74%, or
nearest age 74} we have the sum of the deviations from 74, irrcspective
of sign, 1816, as before,

In order to obtain the deviations from the mean (74-014) all frequencies
in the groups for ages greater than 743 must be multiplicd by -org apda
subtracted from the result. Similarly, all frequencics for ages less than

733 must be multiplied by 014 and added. A\
This gives 1816+ 014 {486 —351). O
Finally, we must deal with the group 734743, with frequeney 163,

il 48— \
735 < T0L4 745

Of this frequency 514 x 163 are assumed to 11'&‘1}&\&-‘(:61‘1 735 and the

mean and 486 x 163 between the mean and 7415,
Each of these sub-groups may be assugtedvto be concentrated at the
mid-point of its own range, thus giving & téfm

163 {‘514 x ‘Séi—l- 486 % f—ﬁ}

to be added to the above. ,{\ www.dbraulibrary.org.in
: o\

Note. For the special gfouip it is simpler to measure deviations not first
from 74 but from the thean direct and afterwards to apply a correction.
The mean deviatigiytherefore becomes
o (18109014 (486 —351) + 13 (5147 +486%)] = 1-86 years.

Median. 'Aszl}eforc, this is a value of x Iying between the sooth and orst
observations? These lie in the group 734-743, which includes 163
obscryatiohs, while the total frequency for lower values of x is 486.

Weassume that the 163 observations between 534 and 543 arc cvenly

\ﬁ)}i‘ea:d over the interval at distances 3, 45y, 354 - 235 from either
w{d, i.e. they occur for values of x:

x’-' 1yt i —3_) = ,_{_2?.*1 (H 1,328
(332""32()): (7324’326 T 326 ) " \;32-326 .

A 7

Lajt

The first of these observations Is the 487th counting from the lowest
values of x, the next is the 483th, and so on.

The sooth and go1stobservations are the rqthand 15thén that particular
group and correspond therefore to vatues of ¥ of 733 + A% and 734 + 25,

"T'he median may be taken therefore as 734 + 5% =73"59 vears.

FMASI 2
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Lower quartile. 109 values lie below the group 711721, which irsclf
includes 181 observatiocns. These 181 observations are assunicd to
correspond to values of x of

pn g 300
F 02

I 3 2r— 1
14— mylog 1
(7I2+362), (;134—362), (712-{- 162 ),

so that the 250th and 251st observations (141st and 142nd in that group)
correspond to values of x:

7irish and gried Q
"The lower quartile may therefore be taken to be 714 + 2582 = 7228 years,
Upper quartile. The 750th and 751st observations arc thj:}IO"I' st and
1o2nd in the group 743—vzl, N\
Hence the upper quartile is 743 + 222 =~z.2y yearg.j.j \

) S \/
Quartile deviation. } (7534 ~72-28) =133 years.“‘:,\

M:?de. The student is recommended to thilthe graphic process of
drawing the histogram, sketching in a siidet frequency curve and
finding the mode by inspection. o\

An analytical method similar to thedfallowing is sometimes uscful:

. Assume that the frequency curvg\in the neighbourhood of the mode
is of the form y=a+bx+cx2 0N

Taking the origin at 73 we {iave the following equations from which
to find 4, # and N

www_cﬁSraulibl:a'r‘ytél'g_in

2 3
J—I} {a-+bx+ cx'\g‘-.-:}SI (the frequency in the group 71 Lomzly,

N

ie. a—b+235_ gy
O™ 12
) t
Similaly™ j ydv=a+ =196
\{;\j v —3 12
4O 1 13¢
and ydv=a+b+2 =163,
NN * 2
"\ From these we obtain = —9, 0= —34
The mode (the value of x § in inate) is gi
& value of x for the maximum ordinate) is given by
dy .
% le biac=o,
A= =

27 a8 referred to 73 as origin,

The mode is therefore 73— 15 =72-81 years,

Note: all the values calculuted are valies of x
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9. Skewness,

If we imagine a {requency distribution represented by a smooth
frequency curve, the measures already demonstrated will tell us a
great deal about the curve. We know, for instance, where its highest
point occurs {mode), whether it Is like a steep-sided peak (small
standard deviation) or a broad plateau (large standard deviation).
There is a further characteristic in which we are qomctlmes in-
tercsted, namely, its lack of symmetry or “skewness™ Q!

a
2\

Positive skewness. Negative scwness.

In a symmetrical curve the mean, median andvhode all coincide,
and the extent to which they fail to do b{‘ gives rise to one well-
known measure of skewness, viz. O

mean —mode 3 (mean mechan) .
standard deviation Staﬂddld deviation (approx.)-
S (12)
For reasons which will bewdimthmmﬂb&atg:prﬁlm approximate
measure should be useg- iny if the skewness is relatively small.
A sccond measuréemetimes used is

(upper quafiilc —median)— (median — lower quartile)
T N (upper quartile — lower quartile)
. ”\\ S (13)
ThisJiga very cumbersome measurce and difficult to calculate,
Per}aé@s the most convenient measure is
QY

v ’ -
“\. ,\/
N s N6 73

o

where g, is the third moment about the mean. This expression
has the great advantage that it is susceptible of arithmetical or
algebraical calculation. It will be observed that when the hump
of a curve occurs at low values of & the skewness 1s positive, while
a hump to the right gives negative skewness. (A symmetrical curve
gives of course a zero result.)
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16, King’s formula,

Before we lcave grouped data we must mention two important
formulae which will beneeded later in the book, Theyare comumonly
known as “ King’s Formula” and * Hardy’s Formula”,

Let u, be a function whose fourth and higher diilerences are
neghgible.

Let A

W=t g+ttt g, +... TH 1, A

AN
0, =u_m+u_m_;_1+...+u_1+zsn+ul+...+zr,,i_lj|;(:§,",

\v/

SEEIER I
ey
w_g, @y and @, are therefore three consecutive\’ groups cach of

Wy =, Ft, .+

2m+1 values, AS)

We wish to express u,, the middle term ofthe middle group, in
terms of w_), w, and . D

Stirling’s formula is )

N\ W

x X2 W(aP—1
zcxzu,]—i—z(;\uo-ﬂ_\.u_dﬁ--é ACTRN o (Té 1) (A% + A% )+,

(Mathematics for Acmariai'.S:%;e}t’ems, Part 11, p. 64.)
Summing \fd:dhraakjbm"{*.m'g.in

~\
Wo={AMF g+ A%u_ (134 221 g
& )

..f;—.(zm 1)y m (i il%(z?_” +1) Ay,

A%/
Sum(;n\izifg"from —3m—Ito3m+r1:
&

*‘45\1+ @y + 10y (6m 4 3) g ST D) @+ 2) (6 4 3) A2

. A,
M\:\' ...... (16}
N/ Hence W_y — 2wy + 20, = (20 1PAZ% .

Substituting for A%y in (13), we obtain:

(a4
Wo={(2m+ 1) “04“6(—25;1—;2(%&1— 2wy + ;)

! | _mim+)
- “ [u N -6_(2_m_+_i_)2' (w_y— 220, %1)] .

weenn(17)
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Putting 2m + 1 =2, this may be written in the more usual form

2__
ty = :z [wn—(” 1) A?-w_]], ...... (18)

24n°

where A now denotes the differencing of group tetals and not
individaal «'s.
When n=5, we have
— 1 , 1 A2
3"-0 =% [3"0 —35e_4]

2y —-00BAMw ,, L, (1)

A

the usual form of I{ing’s formula. The more general exprebbum E1“8
should, however, be remembered. G\
So far we have considered only odd values of m. A\ 7

If 7 is even (=zr say), let A\
Wy=1 g, y~Y Er 3+ U J—i-u TR A TN \\4 thy, sty
T R te\ v z z

N\
Proceeding as before, and remembermg that 2m + 1 =#, we have

F{2r—1){2rd-1
Wy=2¥FU, + (71)2(- da )sxz

n(n?— \
it U dbpgm%f~19=g}% g (x3)

Tormula (18) then, fo;llgws as before, but it will be seen that

I ni—1x . .
- l:wn e A‘zw‘_i:l‘no longer gives the central term of the middle
&

group (there d3mo central term when # is even) but the value of u
for an argdmicnt half-way between those of the two central terms,
Ior ingfance, if the data are given for groups 4043, 44—47 and
48—5the application of the formula would give u,y,.

" \ ¥

) !
7

11, Hardy’s formula.

This formula can be applied only to continuous functions. Un-
like King’s formula therefore it cannot be applied to functions
such as E (the “initial” exposed to risk), which is discontinuous
at the end of every year of cxperience. On the other hand, ES,

the exposed to risk in central form, is to all intents and purposes
continuous, It is true that it increases or decreases by whole
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numbers {or, in certain formulae, by fractions), but entrants and
exits are allowed for as they occur and there is no sudden “jump”
-as with E,. Hardy’s formula can therefore be applicd to £Z.

&

T! R!

[ O
Oy
AN
P Q 7 R P\
~nft ¢ .
Letw ;= [ f{x)dx, represented by thé@rea POQ'F’,
W —Ana
ral 2 10,\\.; .
Wy= f(x)dx} ” '\ Yoy QRR ,.‘(,’ ’
o —mi2 )
e O ‘
and ﬂ’1=f F(x)dx, N " RSS'R.
12 ‘.'w

!N

Hardy's formula gives Qﬂ.i‘é’“central ordinate #, in terms of the
three aregs, i) dsesmsoinw_y, w, and 2, assuming fourth
and higher diﬁerenq\es?to be negligible,

Let \\f(x) =a-+bx+ ex®+ dx?,
O n/2 3
Then < wnzj FX)de=na+—¢, ... .(20)
o —nf2 Iz
. \:\ 3nj2 gnd

O warmrmn= | ) dvmgnar O

\é’n”d Al =w ) ~2wo+w, =20, ... (21)
~\\here A is the operator for differencing grouped values.
Hence, from (20), wy=na+5 A%_

>
. T
and , the central ordinate == [w, — 4 A% ne
” 3 _

This is Hardy’s formula.

12, Application to exposed to risk and deaths,

_It is important that the student should realize the cssential
difference between King’s and Hardy’s formulae.
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King’s formula is a finite difference formula enabling the central
term to be found when only three group totals are given.

If, for example, we are given XE, for groups 4044, 4549
and 5o-34, le. Ey+ Eg+Ep+Ez+E,,, etc, the formula gives
a value for Ej., the central term of the middle group. Similarly,
if the functions given were XE% or 28, (the number of deaths
observed), the formula would give Ef; or f; as the case may be,

Hardy’s formula cannot be applied to E, which is discontinudus.

49 (\H
In applying it to E% we must regard > E7 not as O
15 . L™
| Bt Bha+ Ep BBy o\
but as an integral. AN

1
E_% = [ P g dt,
Jo \
O
where P,, denotes the number exposed 10 sisk at exact age x + 1.
Hence Hardy’s formula gives Py, (hotLy).
If we have the corresponding d;aths (6,) similarly grouped it is
difficult at first to sce what func.tmn 1s given by Hardy’s formula,
- Actually the function is Py +£ pieoq fOr the central point, because

B
[ Pyttt dt:dg:é\ths o8y R Y& and B,
4 ke

Hence Hardy’s, fo Shula applied to 28, gives Pgypyqy, and since
P, has been found from XE] we can arrive at p,; by division.
' This will be de\alt with later in Chapter X,

) Exa pleS

2 .

i Gwcn u’ld" == 3865, Zu =2618 and Lzz .= 1885, find u;, assuming
1 13

\ t‘hat fourth and higher dlﬁeL ences are negligible.
Denoting the groups by w_y, wy and =y, respectively,

Alw_y =514

7_
and tyy = 7[2618— x.,25 {I

=371 almost exactly.

Actually the data are the values of 100é_ from ages 75 to 95 inclusive
in E.L. No. 8, wherc 100é_ {corresponding to %) is 372.
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Example 4, . 1 .

1 M * — A [ I 1
If we were given Tu,=1401, Zu,=2934, Yu, =178, L.e. oan even
1 7 L3

number of terms in each group, the application of King's formula

would give I 021
M= [2434—24—xﬁggf1

= 404 (to nearest integer), ~
It will be noted that itgy is centrally situated in the group 713
By third difference intcrpolation, using the tabulated valdesy:f wg, ty,
g and #y, (Le, 100é_, etc., in E.L. No, 8}, the value of E:,,\ 15 found to
be 404, 5o that on this occasion the group formula gives a goud result,
N

13. Weighted mean. RS o,

This term sometimes leads the student€outhink that he is dealing
with a further measure of statistical avc,r{g;e, whereas all means are,
in a sense, weighted means, RS

X N4

Thus, in the standard expressiof 0T the mean, 17}'{” , the observed

R =t

values of x are weighted with t‘,f{é Trequencies with which they occur;

e.g. a batting average is obStained by weighting the scores with the

frequencies of their ocettrence and dividing by the total frequency

(numbe‘f‘“ﬁf-%’rﬁﬂggw CoPIELCd). The phrase weighted mean is

usually used in .sl;g’tis‘tical books when the actual frequencies are not

available andshave to he estimated. Provided that the values of the

variable argiot greatly uncqual and that the weights used are not

wide of l:h:e\mark, the value thus obtain .

to thetrtie mcan which would have

acth;l' frequencies,

R \! Occasionally welghted means arise in another sense. Sometimes

) Weights are applied to individua] observations to allow for some

N\ clement of relative importance other than numerical frequency.

Weighted means of this kind are to be regarded as indicators or
indices of some condition rather than a5 averages,

14, Index numbers,

Economists ofteq wish ¢

0 have a single meagure of the combined
results of many factors

operating together, Index numbers are
urpose. They areg special type of weighted
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mean of which perhaps the best known is the “Cost of Living
Index”, which reflects the effect of changes in price from year to
vear on a fixed “basket” of goods bought by working-class
housewives.

A convenient year was taken as 2 basc and the figure for that
year taken arbitrarily as 100. For many years the * Cost of Living
Index” was based on prices in 1914, but a more up-to-date base
year is now desirable and the necessary data have been collected:
The present (1949) index is only an interim arrangement, O\

Another example with which the student will meet in investihient
work is the ““ Actuarics Tuvestment Index”, which gives z}mgasure
of how shares in certain broad groups are changing in/alué from
time to time. ,“‘}\\

One of the best examples in actuarial work, howgver, is provided
by the Comparative Mortality Figure (C.M.F.)8éd after the 1921
Census to compare the mortality in differeptsdccupations with that
in the country as a whole and for compatihg different occupations

among themselves. R
"The C.MLF. may be represented by the formula
W@Péh%ulibl‘ary.01‘g.in

1900—- “— 7
N 2P
¢ \J
where P§=the numberin'the specified age-group x of the standard
population,)
mf=centril deéath-rate for the age-group x of the occupation
spedificd,
m;é%ntral death-rate for the age-group x of the standard
A .* population,
anid the summation extends over ages 20-65,

The standard population was based on the number of oceupied
and retired civilian males between the ages of 20 and 65 enumerated
at the 1921 Census. The census numbers were scaled down so
that the number of deaths expected between the limiting ages
according to the rates of mortality %, was 1000.

By the use of these reduced populations the expression for the
C.M.I. reduces to ZPimg. If the result is less than 1000 the

N\
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mortality according to this index is lighter than the averape; if it
is more than 1000 the mortality is relatively heavy.

Any index number is open to the objection that it may convey
misleading impressions in exccptional circumstances, and against
the C.MLF. it may be urged that “normal” weight 1s thereby
attached to values of m% which may be based on very scanty data
and may be quite unreliable in consequence. ~

Index numbers cannot be expected to convey all the information
given by the data they are intended to summarize, but theyr are
nevertheless useful in reducing a mass of classificd datatd fnanage-
able proportions for purposes of comparison, N\

A change of base year affects the relative size oball the indices
already calculated and for this reason a mean ki to the geomictric
mean has often been recommended.

This would involve terms such as

7

>

I Y8 38 . instead B xy3, 1y, ..

An objection is that if one of the‘y’s should happen to vanish in
any given year (a by no meafish impossible occurrence) the whole
index also vanishes. Onefdvantage of this form of average 1s,
however, thit' £ RIRHERCEP 4R Bear does not affect the relative
values of previously ealeulated indices. (The Actuarics Investment
Index involves this'type of geometric mean.)

P\ <&
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EXAMPLES 1

1. An office has analysed its new business figures over a number of
years for endowment assurances with profits. The following table shows
the distribution according to age next birthday at entry:

-

Age next Age next

birthday  |No.of policies]  birthday  INo. of policies|
at entry at entry
15-19 30 4549 270
2024 200 50-54 3o
25-29 450 55739 So .\
30-34 420 60-64 20438
35739 400 65-69 \§
4044 350 70 and over Wi

27

A\

Assuming that the exact age is on the average -3‘_%&\1‘. less than the age
next hirthday, calculate the mode, standard c}eﬁaﬁor}, mean deviation
and quartile deviation. Apply any tests you kaleyv'to check approximately
the last two of these values and comment go the results.

2. The following table gives

LN
%

bridegrooms: £ www . dbrauli brary.org.in
; AN ;
bri;ggrggm {r{qu):ncy briéf;?,zm Frequency
3= ) 13 54— 83
18— ) K £ 550 S?_' S 5
25\ 3050 fo- 40
' M 3653 63— 32
27 2825 66— 24
W3- 1674 69— 16
N ) 33— 1028 72— I1
‘\'"\\; W 3 6H— L 714 75_ 6
39— 466 =8 4
42~ 312 81— 1
45— 238 84— 1
48- 181 — _
51— 110

a_fréquency distribution of ages of

Calculate the mean, median, mode, quartile deviation, mean deviation
and standard deviation. Apply the approximate relationships conmnecting
the values of these indices to check your results.
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3. The frequency distribution of a measurable characteristic x varying
between o and 2 may be represented by the following expressions:

The frequencics are proportional to &* for values of & between o and 1
and to {2 —x) for values of & between 1 and z.

Find by separate caleulation in each casc the values of the 1acan
deviation, standard deviation and probable error of the distribution.

4. A frequency curve fitting an obscrved distribution is given by the
two equations N\
x=qa-tasinf) .
y=ag—acosh|’ )
7'\
+ . . L 3 N . B
where # varfes between —=/2 and =j2. y is the {requengy with which
the value x occurs. A 2
Caleulate the mean, median, mode, standard deviafion, mean deviation,
probable error and a measurce of skewness. Drawthe frequency curve.
If the observed distribution relates to the guimiber of hours’ sunshine
recorded at Greenwich on each 21st of I\'T{rf:}l over a period of 5o years,
state what units & will represent in relgidn'to x and in relation to y.
5. The following table shows.‘j!}ib number of deaths (in thousands)
among the male population in Exigland and Wales in the years 193~ -32

Age Ay ‘il\ol.ac%“' A ng o rNO. of Age at No. of
death deaths death deaths death deaths
o o 15— 18 —o— 51
SN\ 12 40— 24 75~ 72
104 @57 7 45~ 33 8o- 45
155 13 30— 44 35~ 20
s 17 55~ 57 9o~ 5|
’\..25—' 16 Ho— 68 95— o I
SN 30 16 Bg— 81 100— o
AN Total 730

Calculate the mean age at death, the standard deviation of the age at
death and the cocfficients of skewness by formulae (12) and (14). Can

you suggest a reason for the diffcrence between the two measures of
skewness?

6. The following table shows the distribution in groups, according

t{;f sum ass_;ured z_mcl rate of premium per cent, of a number of policies
effected with an insurance company:
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Central Central rate of premiam in group Total | -iverage
ST no. of | TATe of
assured in | N | . [ 15 premium
U group, £ 1o8. ' £1. 108, L2 Tos. £3. Ios._,{,4. 108 £3. Tos. policies
30 1 2 6 1 6 | 2 1 18 | oo
150 2z 1| 3 3 3 0 17 703
1
250 o} 1 3 4 1 I Io 330
330 o 3 6 70 5 1 22 327
430 2 2 4 8 4 I 20 | 312
330 X 1 3 o o 12 283
A oL g
l'otal : 5 oA\
no. of 6 ., 10 | 23 40 15 4 1o Oy
policies ; i I A\
Average | : ' O
slm as- | 300 300 282 ; 310 | 290 275 .“’>— —
‘ surcd, [ ‘

Criticize the following observations regarding thi:\ﬁéures and calculate
any statistical measures you consider nchsSd],) in dealing with the
questions mentioned:

““The average values of the sums assumd ah(mn in the last line of the
table vary between {275 and £310—iwy @ range of £35 in relation to an
average amount of about £3oo—whlle the average values of the rate of
premium given in the last colummw%ﬂdbﬁ&‘ﬁﬂ@ﬁ-@‘ﬁbﬁgﬂh’i jo—ie, a
range of 47 in rclation to aboling oo, Tt is clear from these figures that
the sum assured under the po*hues is on the whole a much more stable
quantity than the rate of premium per cent under the policies, Further,
the arithmetic mcan_df the first three values of the average sum assured
in the last line of thérable is £294 as comparced with a hgure of about
£2g92 for the seeqnd three values, while the first three premiums in the
fast colump #af¢ un average value of 3-11 as compared with a corre-
spondmgm%mge of about 3-05 in respect of the second three. Both of
these leiults show clearly that the larger sumns assured are associated
Wl"!‘:ll’fh’e smaller rates of premium and vice versa)’

\7.\‘ Tind the mode of the following data derived from Friendly Society
records (a) by a graphic process, (4) by an analytical process.

Age at Age at
commencement | No, of claims | commencement | No. of claims'
of illness of llness

16-18 _ 27 40-50 17

18-22 48 56—55 6o
22-25 40 55-6o 52
25-30 64 6065 40
30-40 138 Over 03 Nit
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8. From the following table of the exposed to risk in central form and
the corresponding deaths per annum, find the values of g, and g, fur uges

5 27

12, 37, 42 and 47. How would you find the same functions for sues 27
and 52¢
i Exposed to risk | No. of deuths
Age group in central form | per annuri
25-30 7,300 : 44 ~
30-35 10500 | 74 \
3540 14,700 ; 118 O\
. 4045 15,400 140 :\ <4
45-50 14,000 154
| 5055 12,300 108 |
B KO

g. The following table shows the frequencieé\'}ith which values of a
continuous variable were observed to lie wit i\@the ranges shown. Find
the fourth moment about the mesn, usingéheppard’s adjustments,

=

N
» 4

(Value of
N -

Variable

S

o
o
S
g
Over 1

Frequency
5060
411
260

72
Nil

P

Value of F

variable TeqUenEY A
fo AL :::‘.& X
I . o)
3- »;’\ 318
4 '\\f' 470
'.57\ . 5bo

P Ik -



CHAPTER II

IMPORTANT FREQUENCY
DISTRIBUTIONS

1. The binomial frequency distribution.

For reasons which will be apparent when we come to consider
Mortality '['ables we shall denote the probability of a success bv (S,
and the probability of a failure by p. £

If we have # independent trials with the probability of sutcess
at each trial ¢, we know that the probablhty of n succeéses is g™
Similarly, the probability of » — I successes is ng*~1p al?d‘ generﬂlly,
that of 7 successcs C,g"p™. In fact, the probablifties of o, 1,
2, ... msuccesses are the successive terms in the expansmn of (p+q)™

In statistics we are interested in frequcnmcs rather than prob-
abilities as such and we usually 1imagine that the n trials are repeated
N times. Then AN
the expected frequency with which n.s@'&c’esscs will be obtained is Ng#,

» ” A~ \:‘:%;\’a}d braul} bl'ar‘ﬁ’.ot'g.ir’fvngﬂ_lp !

2.

................................. SN
¢(\J ¥ 1 N h.lﬂ-c?_g?p?!—r’

o ” * Np™.

Obviously the/agtial frequencies in a sequence of V repetitions of
n trials willallbe integers.

The theotetical frequencies shown above will not, in general, be
integers; but it is to be expected that the actual frequencies will not
differ greatly from them.

Beofore we proceed to calculate the various statistical constants
of the theoretical distribution it is as well to examine exactly what
assumptions have been made: the important practical example of
~ mortality data will serve as a test case.

If we were to consider # lives for each of whom the probability
of dying within one year was g, the probability of » deaths would be
*C.qp™ . Again, if there were IN groups each of # lives, as before,
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we should expect to find that » people had died in N*C.gp*~
groups and the frequency distribution would be as follows:

Na.ofdcathsi o | 1 2 ¥ |

No. of groups o .
\ with above | Np® | Nagp™=t | NnCog?pm 2 ... iNCqp™] .| Ng” ;
no. of deaths :

Incidentally we sometimes omit the N and refer to the pruﬁ
abilities as “proportionate frequencies”, ie. the proporfiod of
trials in which, say, 7 successes would be obtained out of(z}

We have assumed that all the N groups are exactly, al:kc and that
each of the # lives in each group has the same changébf dying within
avear. In practice data rarely relate to the numbéi'})f deaths because
of the difficultics of ensuring that each life is'edunted once only in
the exposed to risk and the deaths; it is usdabto base an inv estigation
on the number of policies, with certgig a\d_]ustments with which we
are not at present concerned. lhus a man who dies having four
policies in force will probably, g.tye rise to four claims, and these
will be reckoned as four sepalillé deaths. In this way the inclusion
of dupllcat%&msﬁ'ﬁa@ﬁ@ﬁpy&t@}p made above, and such factors
as epidemics, wars, lgeal environment, etc. may mean that the
chance of one map dfid g is not independent of the chance of another
man dying. \

Statistical methods should therefore be used with discretion in

dealing with$tch data and results obtained by them should not be
1ntcrp1:.\t& too dogmatically.

2 Mean and standard deviation of the binomial distribution.

N ) In the gen ral case of class-interval A we shall have the values
\ ‘; o, h, 2, 37, . n{; oceurring with frequencies Npr, Nupt g, ... Ng™.
"L'he total frtq ency=N(p+gn=N.,
The mean is tharefore

L. .
% [OND™ +hi¥gp g+ 2hN"Cypr-tg2 . 4 niNg"|

=ngh[PN+ (R —1)prPg 4 L g1
=ngh[p+gr
=ngh.
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The second moment about the origin (72,) is

I? (02N + IANnphIg+ 4N Cop 2 + ..+ NG

= ngh? l:p'n-—l t2(n-1)p" % +3 (ﬁ__Ii(l”.—_z)Pn—sqz P ng'n—l:l_

The expression in brackets is the first moment about — 1 of the N
distribution (p +¢)** From (1) we know that the first moment |
about —1 is (n—1)}¢+1, and the expression (2) therefore re.dg'c‘es\
to O

ngh? [(n—1)g+1} 4 “

)

'he second moment about the mean () is derived p{sﬁbtracting
the square of the mean from ;. It is thercfore \,

ngh? [(n— 1) g+ 1] — g% =g (129) >
o een(3)

N/

Hence o=h «\*;@é N veen(4)
The results (1) and (4) are veryj{jﬁl‘portant.

Example 1 A Www . dbraulibrary org.in

)
A throw of § with twodice being counted as a suceess, we have ¢=1,
where ¢ is the probability of success.
Ience, if four gairs,ct dice are thrown, the chances of four, three, two,
one and no succég.,es are the successive terms in the expansion of
2\ L, By
AV s+
If the thqh} pairs of dice are thrown ¢* times the frequencies of o—4
succegses would be as follows, if the theoretical probabilities wercrealized :

RS
N ‘ No. of successes —'_4 | 3 2z | 1 | 0O ‘
i Frequency I | 32 384 i 2048 li 4066 i

The mean of these & w74 +{3%32)+(2x384) + {1 % 2048)] =4
as it should be according to formula (1).
Similarly, the standard deviation will be found to be '\-":3_-%., which is
Nmpg, where n=4,¢=%5p= 2

Fvasiii
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3. The normal curve of error.
In tts simplest form the equation of this curve is
Y=¢3°
Any other form can be reduced to this mercly by a chanye of
scale and a change of origin.
J—-S
The most common form of the equation is y = y,¢” ", ~
This is derived from the simple equation above by putiing
:"\’
} x \.."
v=2 and x=-%_

Fo Tz

N A

 §
Ny
X

where %, and o are constants, the signiﬁcance'qf:\\'l‘iich will be
considered later. o\

There is in fact only one normal curve, aMaet which makes it of
the first importance in statistical theory, :..\\;

at &

The curve y=y,e 27 i3 clearly symimetrical about the A-axis
and approaches the x-axis asymp,tgt’ic:'illy as x—+00; the total area
corresponding to the total fl'quéfrgy of the distribution represented
by the curve \\y

www.dbrau l‘ﬁvai%’%l’ -in = —;x’;
=y i\ te §.ac=2ynJ~ e *dx,
Ke) 0
. x2 £ \Q.,l
Putting e ;z?}}e integral becomes

N -
) Ny fo et Tdt=1ay 01 (1)
K/

\\\' : = ’\"f;"'.:!f'n a.
FEhe proof that T'(3) =+
"\ »/ Hence, if we denote a
equation of the curve is

is outside the scope of this book. |
s usual the total frequency by N, the

. _“N ._2&:2_
y= o= (s)

Vama e
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The square of the standard deviation (s.0.) is

R A o 2
i, [y
—TJ X2 _-e 3°=dx=—'. xle 2 dx,
—m 2T NTod) 0
ad
; Integrate by parts, taking x as the first part and we 2o° as the
second.
= E i x2
V2 a1 N R N e N\
Square of 8.p.=—— x(—o—ze ‘G):’ +=| ¢ 24y

“\,'1".'0' 1] v o

=O’2, N

since the first bracket vanishes at both limits and N

20 - &
J Zcrnd = ,_7?, as shown above{" \
0 42
4. Standard tables. R

When the total frequency N and o a;é both unity the equation

of the curve is B
V=B \L 8
A, 2;r~
Extensive sets of tables havebeen d%ubhshed for the curve in this
rh bray Ey .org.in
form. The most 1mportan§zue THote W ity

(1) the ordinate y farvalues of » which are at very close intervals
when x is smll and y changing fairly rapidly, and for values
of xatlegs frcquent intervals, when x is large and y is changing
only %lovfly

(ii) Vah{&‘: Off —e 2 dx for different positive values of z
o0 A 2

J,b.ls *function is usually denoted by §(1+2.) and represents the
] étea-of the normal curve Iying to the left of the ordinate x=2x.
Since the area to the left of the origin is § (the total area being
unity) it follows that the area bounded by the curve, the axis of x
and the ordinates x=0, ¥=x5 15 1,
Hence =, represents the area of the curve lying between the
ordinates x= + 3 and can readily be obtained from the tabulated

itz

values of — 7 dx by doubling and subtracting unity from
— o427

the result.

4
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o

. | G .
Full tables of the ordinatc -, =e” % and of the area Moz are

N IsT

given in Sheppard's Tables of Area and Ordinate in ternis of Jthseissa,

In using them for the general Normal Distribartion, x o nuust be

taken as a new variable x' (say) for entering the table and the ordinate

s0 obtained must be multiplied by ¥jo, while the arca must be

multiplied by N. N\
Table Iin the Appendix can also be used as shown in Bainmle 2,

e . p : - LY
The student will ind this table reproduced in A Short Lot ction of

L
. 5, ) .. )
Actyarial Tables for use in the examinations Dt
The importance of this table will be appreciatdd When sampling
is discussed (Chapter IV), but the following will #t once be olyvious.
|,-\T % 3

R

"T'aking the general equation y=—-e¥¥, the probability that
V2gg

an observation taken at random lics &ithin ky say, of the mean is

clearly the area of the curve lying Betwween the ordinates + — — 4 and

x=Fk divided by the total frequépey: this probability is therefure

AR T x®
’2‘. < - X
W | ¢ wdx. . {0}
wWans) o )
www dbraulihrary or %m .
By taking x/o as A new variable the values of these probaiilities
- can be read off {olipterpolated where neeessary) from the prepared
tables. The fpll%vm g valucs are important;

o 3 Probability
O — T —
@) 7450 | "5000
.\.\\ o3 : 6827
\\ 2o 9345
": 3o 0573

Thus we see that about 95% per cent of the total area les between

%= —20and x= +2¢, while no less than 9973 per cent lies between
¥=~—30and x= +30.

Expressed differently, this means that

distributi . in 2 normal frequency
Istribution about ¢33 per cent of the ohservations lie within a

distance 20 of the mean while about 967 per cent lie within a dis-
tance 3o of the mean,
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5. Probable error.

"The first entry in the table relates to the probable error (Mathe-
satics for Actuarial Students, Part II, Chap. X11, para. 11).

If we consider a general frequency curve y =f{x}, the probable
crror (£) is given by the cquation '

Flx)yde==| f(x)dx, -

~M+ T 10
JM—P 2,

@

where M is the mean and the frequency curve stretches from x=a.
to x=5b. Lxpressed in words this means that half the total frcgu@:ﬁf;}
cceurs for values of x between (mean—F) and (meany PY An
observed value of & selected at random is as likely to fallSyithin the
range M — P to M+ P as it is to lic outside that rangef, ¢

‘I'he probable error is rarely used nowadaysi\fer the normal
curve it is approximately equal to -67450. AN

W

X
6. Mean deviation of the normal distribution.
. . B - -
Since the mean and median are zet®,'the mean deviation
";C: N ok

= ‘J\.; W
= [ Wi dbfiukiliary org.in

-N....D W' 270
.w\ P

S Q';z_ov._ g_gag—lw

=

PN N2 =0
N < M_x-"Zcr
:"\Q~
N = 70790 ApPIoX.

Thigwvaluc for the mean deviation is also widely used in the form

N\ mean deviation =% standard deviation, ..., (8)

but may be wide of the mark if the distribution considered is not
approximately normal.

Example 2,

A normal distribution of a contimuous variable has a mean of 13:4 and
a standard deviation of 2-5. Find the probability that a value sclected at
random lics between the values 11-8 and 15-0.
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"Taking the mean as origin the limits become — 16 and 16, Henee the
probability required is, by (6} above,

STATISTICS

2 I
- J e Zx2aidy,
vzm x 250
To make usc of the tables in the Appendix we proceed as Tolluws:
Let w=258,  dv=2-5d",
N\
When x= 16, % =16{25="04.

. e 2 B Oy
The required probubility is therefore — ’ e 2y, wingh By use
N Tl N/

\
~g
(™

of the tables i found to be -478 approx.

\
More generally, the substitution x=ox’ reduces thefmtcaral
i wt )
2 - .
- .- '. g gt dx
Aame o A \J
K
2 [He a2 L@
to - e By N (5}
vato »

«l

and the tables can be uged dircctbf; N
ExampleWS ww.dbra uljbl,:af'y".;:ol‘g.in

The following table (Algives the distribution of heights of 1coc men.

Find the normat curyd r¢presenting the same total frequency and with

the same mean and H{Esame standard deviation, Draw the curve and the

histogram,

Compare the’ value of the interquartile range obtained from the

N\

statistics win“that of the correspond
§ ’ 4

: \, Table A
! \ L Ko, of mcn_ -
! WBtature in inches within these
N linaits of stature
'”\ ot - —_— _ _
\ ! 61-5-62:5 40
£ 625635 190
63:5-64-5 245
645655 405
65:5-66-5 845
66-5~67-5 1235
7°5-08-5 I39'0
68:5-695 790

ing normal distribution,

Stature in inches ‘

69505 \
70 5713
7T 5725 ‘
725735
735745
745753
7575765 ‘

765775

’ 3
_____'_‘_‘———_._______. .

No. of men
within those

limits af sratare

1383
1080
535
475
2140
120
50
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a'?

Table B gives values of the function y'=¢ 2,

Table B
[ 2 :I =

x 5 —e & | log v* X . y':e__z_ log v’

o 1-00000 o 26 | -0340% 2'33200
o2 98020 99131 2:3 ‘0184 2:29757
o4 - rg23IZ 1-9h520 30 ‘GILII 2:04567

I o6 . 83327 192183 32 -00563 377641
' o8 | 2bry | 186103 34 00300 3-48978

1o bobsz . 1-78285 36 00153 318577 |

12 48673 168731 18 ‘00071 186439 I\
AL "37531 157439 40 | -0o034 452504
| .16 -27804 T°44410 42 | -000Tj 4169332
‘ -8 -19790 T-29644 44 ‘00006 579603
oz *13334 113141 46 00003 | NE40516
ooz 08892 2494901 48 -Coo01 L N 690607
! 24 03614 2:74923 50 | — LY Bi7132

P ;
AN\

There are two points to note about Table Ax Pifst, the frequencies

ending in -3 are probably cansed by m -wl}qpse height (fo the degree of
: . h . }’\-’ i Frall ,I'al"gf. o Ih .

accuracy adopted) coincided with the Timigef a groupye.g. 65 5 inches.
Tt ig customary in such cireumstances 40)allot -5 to each of the two
groups adjoining. Thus three menof height 65-5 inches would be
counted as 1'5 in the group 64-5'—‘65.\5 and 1-5 in the group 65-5-66-5.

The second point to notice "R\that the distribution is roughly sym-
metrical and an attempt to fit a normal curve seems likely to be fairly
successful in view of the rumbf the data,

The general equation Pfthe normal curve is

N\

N\ N _i
.%“ y= T g %0

L\ V2w o

3

referred to the ordinate through the mean as axis of .
Hendgwg need to find the mean (so as to fix the axes), the total frequency
IV and the standard deviation o,
Assuming that the total frequency of each group is concentrated at
the mid-point, we proceed thus (see table on p. 40):
69 is taken as an arbitrary origin, Referred to this origin the mean is
—. 1A% inches.

s, mean =69 —-145=68-855 inches.
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40

— — B e
Sature | (g Freauency (2% (3) @x@ | e |
() (2) (3) (4} S

_ 4 |

bz | -7 4 28 | 196 4
63 -6 19 114 P 081 23
64 | -5 | 243 122°5 6125 | 475 |
65 ~4 40°% 162 645 88
66 -3 845 253’3 7605 1 1REN
67 -2 | 1233 247 194 240,
68 | -1 | 139 £39 139 188
69 © 170 o o Jorg
70 1 3 1385 | 13¥FN 73S
71 2 103 210 432 | Sho-3
72 3| s3s 1605 4515 . 9T+
73 4 47'3 190 NN 760 | 9br§
74 5 21 1008 | 525 | gf2s
75 6 12 L2 432 943 !
76 705 NV 35 245 | 9995 |
el 8 | 5 R g 32 | 1o00
Total | — |1000  -aloB6 +g21 | 6580 . — |

I LTTAY]

|

ANV = 14z
h'r'mi'.ihl'g;_",)z.o_l’g-_i__ _4_3 —

my {secoud moment \&f)out the origin}=

adjustment,

~“~
N\

10

ignoring Sheppard’s

8580

1L}

o pg {second rhcﬁncnt about the mean) =6-580 —( —+145)?, ignoring
Sheppard’s adjuStment,

S

a= \-"'6'476 =2-54 inches,

. =6559.
Subtragtir}g\ %5 of the class-interval (Sheppard’s adjustment) from this
value for p\g we obtain 6476 and

The lower quartile separates the 250th and the 2518t observations and
m:'::fr’om the last column we sce that it lies in the range 66-5-67+5, which
\ ) includes 1235 observations. Hence the lower quartile

=665 +

123'5=

775

6%-13 inches.

Stmilarly, the upper quartile, which separates the 7soth and the 7515t
observations,

or alternatively =70-5— _.zgi =
13073

1
=605 4
95+I3

16

85

7048 inches,

70°48 inches as before.

< interquartile range = 335 inches,
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It will be remembered that by definition one-quarter of the total
Lrequcnm occurs for values of the variable between the lower quartile
and the median and also between the median and the upper quartile.
£ "I'lie difference between the lower quartile and the median is cqual to
; the differcnce between the median and the upper quartile only in a
symmetrical curve,

el ¥

T

i
/

,
N —— — —— S .. TSI
3 E

3
3
]
i 4
] | \I
N I
|
|
B N SR
6z B354 ) 65 |
teture infm}.hes 68255

\

%" g TIig. 1

If we mea‘s,me from the mesn a distance cqual to P, the probable
error, 1M b‘oth directions we cnclose half the total frequency.

In a syImmetncal curve such as the onc considered, the median and
mean coincide and it will be seen that the interquartile range is equal to
2P =2 % 67450 in a normal curve.

;
3
N
§
i
;
A
A

Hence the interquartile range =2 x 6745 x 2+54
=345,

as compared with 3-15 obtained above from the data,
This is one indication that the normal curve is not a perfect fit,
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We proceed to plot the curve and the histogram represeuting the
given data.
The equation of the curve is

Il
1000 —%4.5yW
P TSR T ¥ o
¥y= — E .
Y27 X 2754
ks

To put this in the form y'=e %, so that the given table of values
can be used, we let

oo o
y:—_—- — J.' N & \
NI X 254 O
ie logy =1 —4 log 2 —log 254 + log 3’ \ \)
and x=z2 54x W

X
.

logm=-4g71496, Iogzn -3010100 and log 2-54 == 40483375
. logy=logy +2-19608. L&
The following table is constructed from Fable' B by adding this

constant to the given values: N
I] x l logy : ¥ N loo v : ¥ :
\ ‘ 2- 19608 15706 | \Jb604 | 72817 | 533 l
508 2873 153-95}71" 712 | 49365 0 312
l 1016 l 216134 1+44;'g~ 7620 | 24155 174 I
524 1, &6y lbﬁfrw)g p 8123 | 197249 o4
| 2032 | zog7Ir l/ANt4o3 8636 | T68586 . 49 |
| 2540 \ 97893~ } 9526 o144 | 138185 | 2
3048 1-3834g™: 7645 ¢g'h52 . 1ohogy | -1l :
3556 197047 ] 5893 1w1bo | 272172 ob
4-0b4 - 164018 ] 4367 100668 | 236360 ' D2
4572 J “1 46252 3108 11376 5 3gg2ri ¢ 0L ‘
b I32749 \ 2126 11-681 160124 | 00
114509 1397 | 12192 | Fagges | oo |
94531 l 882 12700 © gpbyqo 1 00

. (" 1o order to filustrate the rapid tailing off of the valucs of y more

\ ‘; “significant figures have been kept than can be used in drawing the graph.
The curve and the histogram are shown in Fig. 1.

7. Approximation of the binomial distribution to the normal
curve,

'The binomial distribution may be represented by a curve drawn
through 7+ 1 points corresponding to the #+ 1 terms of the expan-
sion. ‘This diagram will be symmetrical if p=g,and if # is large will
not be very different from the normal curve,
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We shall now show that as #—>00 the distribution does in fact
approximate to the normal distribution. Incidentally, the series of
points will at the same time approximate fo a continuous curve.

As 2 Is totend to Infinity we can, without loss of generality,
assume that #=2% As p=g¢=1, the binomial distribution can be
written ;\T(% 1 1Z )2}4:_

The central term .nf\*k 1}! ||( 32 = g

To arrive at the equation of the normal curve this term n'u‘,lst
correspond to x=o, and if we imagine the points reprqsentmg
successive terms of the expansion to be at intervals of Z§.the term

corresponding to #= 7A will be o
v 2kl e \J
N (R—r)(k+7)! (2) “yrr::\\“
Yo _RE—1)(k—2}...(k=y £
Tlence ¥ (k+r)(k+r—1) {xeﬂ)

) )
( 1+ E}\(@w-.ignau(mﬂaﬁg.m—g_m

*, provided r<k O
Y 1y 2 / -
log y,, —log v, :,IO,E\(\I _k) +log (I —.f_e) +...+log {I __rk_l)
ST A I
x'\“ og I+k log (I p log I—i—k
.\~ I [t LA
“.z\\ k(I +2+43+..47—1) 7~ terms
A involving second and higher powers of 1/%
e \ ¥ 2
\ ) = -—1 approximately.
Soym=Nee oL (10)

To derive a continuous curve the interval 2 between the points
must tend to zero, In that event #% becomes the abscissa x.
) 2
R
We know that for the binomiat distribution o =npgh2,

Thus
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Asm=2kand p=g=1%,

, 72 X2
o=2k. L M and = .
=e ko2t
Substituting in {10), we obtain
J—::
Y=yt I el 1)

8. The Poisson Distribution. ~

In deriving the normal curve as an approximation to the biigsiinal
it was assumed that p=g and n—>cc. In practical work tm» fldans
that p and ¢ should not be very dissimilar and that# s,h()uldln, large.

In some fields of statistics, ¢ is often very small indc oy althouzh
# is so large that the product ng is apprcciablc..MI’\c')kfinstnncc, the
chance of a given employee being involved in an ageident in a {actory
{g) is usually very small but the number emPlsQ:d (n) is so large that
ng, the chance of an accident occurring fo someone is quite an
impostant consideration. Similarly, tha’probability of any glven
person dying within a year is very gmall indeed except at high ages

but the number exposed to the sk of death in most nvestigations

into mortality jg, }Eﬂf.}’alﬂrgﬁarg.&g,in
In such circumstancessthe binomial distribution can be repre-
sented approximately ; as\follows

Let ng=m and a‘sgume that #->0 and ¢-» 0, m remaining finite.

The probab;hty of 7 successes in 7 trials = — — — ! g'p* 7 which
O\ / ri{n— f) i
may be written .
QY - . N |
o\ O 71 (I a }a) (=7 w1 — minps (12)

I Simiplify this expression we make use of Stirlin

a\” : g’s approximation:

O

nli=yom eyt
Substituting for the terms involving factorials we obixin:
n! gt yptd
(n—1) 7 (1 —m; n)’ e (n— — YTl }I’(I —miny

. . - I
Le. T e~ rinyr [y — oy ee-(13)
T ~rfnyrHi(y —wmny
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§he—rtd
. .
Asn—w (1 - -~ and (1 —mfn) =1,

Hence (13)— 1 and (12) tends to the form:
. m . #"
H(I —m/n*  Le. il no (14)
Thus the probabilitics of o, 1, 2., # successes become in the limit
the successive terms of the series:

wmomt o omr 1
— it ——_— i e — .
€ { +zl'zl+"‘fr1]""f' ...... {

The distribution represented by the successive terms gff.‘(; 5) is
called the Poisson distribulion. D
Tt will be seen that the total probability for all value?,:}f 7 is unity,
It is Jeft to the student to prove that the mean 1s geaud the standard
N

4
15N
o\

. . I— e
deviation i, ¢*¢
AN

9 ]
"

9. The use of the normal approxim;tiénl

It may seem at first that the np{iiia'l curve will not in generat
be a very close app1‘0ximatiwﬁ’,’fﬁéj@‘bﬁéﬂlﬂhi@miair‘giiytribution, In
this connection it will be realimd?

1. 'That the binomial dfé&ibution is a series of points approxi-
mating toa contjrﬁx}us curve only when the number of terms
is indefinitelydncteased.

2. 'That the bintmial distribution is finite, while the normal
curve @gp’ﬁﬁches infinity in either direction.

3- Tha\tkim’less =g, the binomial distribution is skew, while
the\formal curve is symmetrical.

Tnactual practice the approximation in the neighbourhood of the
m\(mri is much better than these considerations would suggest.

If we measure a distance Ko from the mean in both dircctions a
balance of errors is ebtained and the frequency enclosed by the
normal curve may be a satisfactory approximation to the frequency
in the binomial distribution within the same limits,

This is very important, because it means that the sets of tables
prepared for the normal curve may sometimes be used for a
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binomial distribution. Thus from the table on p. 36 we often assume
that about two-thirds of the total frequency oceurs {or valucs of x
lying between M —a and M+ o, where M is the mean and o the
standard deviation, while about go per cent occurs for values of & '
lying between M —z20 and M+ 20. The student will, however,
realize that unless # is fairly large or p is nearly cqual to ¢ these
assumptions may be far from the truth.

Exzample 4. Q.
The following table gives the first 13 terms in the expansion Qf \
10,000 {95 + 05 )%, N\
the figure of 10,000 being introduced to climipate decilrial's{\

Valuﬂf_‘fﬂu—.—__d [ Vil of | & ]
cariab ., i Accumulated i lyle N . Accumulated|
l;ri le n Frequency | frequency Tl 1:1)1{_, ; Fyequency frequency
S - — — \\: — - [,
|l o | 59 59 {:.\ | 649 0508
Pl ‘ 31 370 N 349 L ogr
e | 8rz | 1,182 O | 16y D88y
“ 3 1,360 \ 2,575 eI ‘ 72z ! 9,030 ‘
P4 l 781 | 4,359 2% 12 i 28 | 0,581 |
5 &p@REP_dbr}a ulfbESBy ong.in | i ‘
6 1,500 559 y3-te0 | 16 | 10,000
5 nobo | {8719 inclusive ' i |

The distributipr}é clearly very skew.

In the previgy$notation N = 10,000, 7= 100, p =-93, §="03.

The mednSng = 3.

'The standard deviation =+npg= 10 x-I-o475 =2-18.

Thé limits M~ o to M +¢ become 2-82 to 7-18 and include 75°37 per
cert'of the tofal frequency,
¥ 'he limits M~ 20 to M+ 20 become 64 to g:36 and include 638
{per cent of the total frequency.

If we used a Poisson distribution as an approximation we should take
m, the Poisson parameter, cqual to the obscrved mean viz, g and the

standard deviation would be /5 or 2:24 as compared with the more
accurate value of 2-18,

Example 5.

‘1‘1 asfsurance company is about to assure a group of 10,000 lives all
) . 30

aget ¥ 101 a sum of f100 payable on cach death within one vear. The
company wishes to charge the minimum single premium which will
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ensure that its probability of suffering 4 loss on the whole transaction will
not be greater than onc-fourth,

Calculate the approximate single premium per cent which should be
charged to cach member, ignoring interest and expenses, and assurming
that for a life aged » the probability of death within one year is *o1.

Discuss briefly the effect on the problem of each of the following
variations:

(i} thc sum assured being £200 instead of £100;

(i) the number of lives being 100 instead of 10,000; Q
(iii) the specified probability of loss being somc figure other tharya
one-fourth. \' ‘\

Calculate the approximate single premium per cent in cases (i) ang {if).
N

The probabilities of o, 1, 2, ... deaths accurring are the, &ictessive
terms in the expansion of (sgg +-01)1000, AN
'Ihe terms are proportionate frequencics and are egdetly similar to
the frequencies we have been discussing except that Ny,
The mean number of deaths is therefore ng or KC:JO.\&ﬂd the standard
3

deviation v‘lné,;:'g or 1o very nearly, \&

Since # is large we can assume that the distiblition is nearly normal,
especially as only an approximate result is redired, P, the probable error,
is, in that event, 67450 AN

:\.\ﬁk};ﬁ.ﬁdbra ulibrary.org.in

If M is the mecan, half the tataMrequency lies between M~ P and
M+ P, or in a symmetrical disgtibution a quarter of the total frequency
occurs for values of x greatér'ehan M + P. Applied to our propuortionate
frequencies this means that the totul of the frequencies for deaths in
excess of 100+ 6745 ix0nl¥ one-quarter, i.e. if we base our premium on
the assumption that ¥67 deaths will occur the premium will prove
inadequate in les;g\ti}ﬁn one case in four,

The requirp\c(premium is therefore £10,700 or £1. 15. 3d. per cent,
say. &

The eff\el:t's of the modifications set out in the question are as follows:

(i ’”‘L}'hié has no effect on the premium per cent since the amount of
the claim is the same for each death. If the sum assured were not
the same for all the lives the problem would be more complicated.
This aspect will be discussed later. {Chapter III, Ex. 3.)

(i) The expression we now have to consider is (-9 + 01 and
the mean of the distribution formed by the terms of the expansion
is unity, :

The standard deviation is v100 x *gg x o1 = ‘693,

We can no longer assume that the distribution approximates to the
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normal over most of its range, because # is now rekitvely snall. We can
now, howcever, expand the binomial to obhtain:

Chance of no deaths occurring = (-99)** S e upProx.
» one death » =100(yy) (o) v,
100X GG, Lo ,
»  twodeaths == [y o 15

Tlence the chance of more than one death is
1—306 —-370="204,
while the chance of mere than fzeo deaths is

1—-366~-370 —- 185 =-070.

A premiurn based on one death oceurriing out ot a Tun:i
tnadcquate in more than one case in four and we must u]lgniﬁ{c.
by charging a premium of £2 per cent. D

(iii) The probability of one-fourth enablcs usedo use the probable

error when 10,000 lives are involved. Fox diry other Lubility,
say one-fifth, we might rcfer to pgpared tubdes buscd on the
normal curve. Such a table show :lﬂor instance, that the prob-
ahility of an observation lying giftside the ordinates &= < S {the
mean being the origin) is -423%8) whilc the probability that it Lies
outside the ordinates x = 2go is 30312,

Since the curve 1s S}-"mmet}'fqéﬂ we deduce that the probuiiiity of 2
value beig greiies (kBB pall of 423715 21185, while the prob-
ability that it is greater than gs is *15400.

By interpolation theghdnce that it is greater than -840 15 -2, or ope-fiith.

In other wordfﬂ{\if' we were o charge a premium which could be
expected to ppuye nadequate on only one oceasion in five we should
allow for a pubaber of deaths equal fo the mean + -S40,

For 19,;0bb assured we thercfore allow for 100+ -H40 x 10 deaths, o6
say, ¥og£&e’ﬁths, by charging a premium of £1-0g or f1. 15, 104, per cent.

_ Fl{l too deaths the normal curve is not a sufiiciently good approxima-
t}o'r}, and unless the probability of loss were smail the labour nvolved in

7 two deaths

\.,t?‘?aluatmg successive terms of the expansion would be heavy.

Actually the premium of £2 per cent calculated in (3i) would cover
two d_eaths and the probability that it would prove inadequaie is only
079, 1.2, less than one-twelfth,
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EXAMPLES 2

1. In 100 investigations into the mortality of oo lives all aged 7o, the
number of deaths occurring in one year were as follows:

Investi- Investi- . Investi- Investi- | ~,
wuon | S | oo | S5 | wn | Gk | B e
I 20 26 0 51 16 76 113

2 24 27 11 52 19 77 3N
3 19 28 10 53 21 78 .1‘{ N\
4 20 29 9 54 15 79 [\ M
5 7 | 30 ¢ 1z | 55 | 16 | 80 {16
) 5 31 9 56 12 ) 15
7 23 32 13 57 13 |NE2 16
8§ o | o3| s | s8] 17 NVBo s
a 10 14 16 39 195 84 15
10 8 15 14 lel N 35 r7
11 9 30 16 61 N6 86 12
12 7 37 18 62, W 15 87 17
13 ] 38 13 63 b1z 88 20
w8 | 39 7 {8 o) B9 a2
15 6 . 40 IQMW. ﬂdﬁraul!ibr&fy.o*g.iﬁo | 15
16 12 41 A0 66 18 o1 ¢ 14
17 13 42 ':' \14 67 IX oz ’ 1Y
15 11 43’\\ 16 68 15 93 16
19 o | 4 | 9 | b0 | 7 | ot | 77
20 18 ."',q.”_;‘ 22 70 21 93 2
ar “ '46 : 135 71 13 gb Ig
22 Q 47 13 72 15 97 16
23 \u 48 18 73 14 98 19
24 N\ 21 49 13 74 18 99 = %
2500 * 12 50 15 75, 20 oo 16

~—
\Calculd,te

{«¢) The mean number of deaths,
No. of deaths in one year

(d) 'The mean rate of mortality goo= No. of lives investigate i
{¢) T'he standard deviation of the number of deaths.

Would you modify your method of caleulation of item (3) if the
number of lives in each investigation had not been the same?
If the frequencies of the rumbers of deaths in these 100 Investigations

FMAS ii] 4
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could have been represented exactly by the binomiul distribution
N{(p+g)7, having a mean equal to the obscrved mean, caleulate:

(¢) The standard deviation of the rate of mortality.
{6} The number of investigations in which cxactly 15 deaths would

-have been recorded.

2. A large issuc of Bonds of £100 each is redeemable thronoh the
operation of a sinking fund, by annual drawings at par, the proportion
redecmable at the next drawing (which is to take place shortly) Jacing
I per cent of the total outstanding. The current market price of th: Ronds
is £110, s0 that an immediate loss of L10 arises in respect of £ach Bond
drawn for repayment. N ©

A holder of 5000 Bonds, whilst anticipating a loss of L3500 a1 the above
basis at the next drawing, desires to cffect an indemnpix pblicy to cover
him in respect of excess losses arising if the propottion of his holding
drawn for repavment exceeds the anticipated npé.tent, e.or. if 51 of his
Bonds are drawn, he requires indemnity to the'ektent of £10, und so on.
Calculate approximately the net premium réduired.

3. A normal distribution has a mean ﬁ:f";-sz and a standard deviation
of 2:38. Using Table I in the Appendiciealcnlate the probabilitics
(1) that a value sclected at randemt is greater than 12-00;
(i) thatavalue selected at rando lies between the limits 600 and §-00.
(Note 1 t&é\l}:ﬁ@;}ﬁ&:}fﬁﬁg&@g}@ﬁtan’c from the mean.)
4. Alarge transport gfgimization decided to increase all its passcnager
fares on st January JG4r by 10 per cent. You are asked to cstimate the

passenger roceiptsfon 1941 on the assumption that the volume of traffic
remained unchatiged, The 1940 figures were;

(«) Passqngér' receipts £1,250,000.

(b) Fare,wld. per mile,

(c)\f?crage mileage per journey 5o,
In @letlating the revised farcs, fractio

' : ns of a penny are to be taken as one
penny. How would vour estimate va

ry if fares were to be calculated to

“the nearest penny, halfpennies being taken as ong penny?



CHAPTER HIT
CORRELATION

1. Hitherto we have considered only a single variable and the
frequencies with which it occurs, When we investigate two variables
x and y and the frequencics with which pairs of values are associated
we meet the phenomenon of correlation.

Suppose, for instance, that we tabulate the height to the neardsty’
inch of a number of fathers and their eldest sons, We mlght fiave

a table similar to the following: N
T'able T mf\i'
Height of father 1 Heigh& of s;n TTeight of futher [\, “Height of son —[
{neavest inch) {nearest inch) {nearest incl’l)‘.\ {nearest inch)
- - ~¢\ - H
03 05 g iyl
64 62 Gy 69
63 o7 N 73
i 65 i =0 RS VL 68
66 64 wrg d brau?ﬁ)rar‘y.m"g_in b9
66 66 70 74
60 : 718 71 67
67 OAY 71 70
67 X ?}S g2 s}
68 LADB8 72 73
: 68 AN 70 73 70
| 63 (N 72 74 74

il [ 1

This is'a‘n\\examp]e of the simplest type of correlation table, which
consig.tgf'n’iizrely of a list of observed values of xand the corresponding
valliesef y. 'I'hese values necd not necessarily be arranged according
to d d(,ﬁmte scheme, and if there happencd to be two observations
for which a given value of » was associated with a given value of §
they would appear as two separate items in the list, For instance, in
Table I we might havc had two fathers of height 7o inches to the
nearest inch shown as having sons of height 68 inches to the nearest
inch. This would be represented by two separate entrics in the
table.

42
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In the more general type of table the data arc extensive and have
1o be grouped so as to show the frequencies with which valaes of #
within a given range are associated with vahies of 4 witliin the
various ranges adopted in grouping. For instance, Table IT shows
for a given year how maximum and minimum temperatures were
associated. As frequencies have to be shown as well as values of the
two variables, a double-entry table is used.

N\
Table 11 A
2 AN
Maximum : Minimum tempcratures in deprees Iahrenlieft
ternperatures o E N o
in degrees Relow | [ A\, 3
Fahrenheit MW 3D 3139 ¢ 3947 4735 | 5 B3 ' Over £
|— e .‘\ i
!J Be.][)\;v,r 4_5 10 ! 30 ; 5 : —A I. _ _
e T O B R
§5-05 — 1 o s e s . -
O P - i
5'_!'5 - ; - 10 \® 30 10 ! I
o T B B o S N
veeSs - - sy — 501 s

_ = . . JRp— -—_

Ta e . o . .
.“e m“@J%xE%&liﬁ‘;&%&fggnwhat extent onc variable varies
?"1"'-11 another. The BXt{Smes of these comparable variations are
important:

N\
(@) If large vz}hgé of x tend to be associated with large valucs of
 there {811d to be positive correlation, :
(&) If 1’ scvalues of ¥ tend to be associated with small values of
@yd'small values of x tend to be associated with large values
(of ¥ there is said to be negative correlation:,
'\'fI'The figures in 'Table TI suggest positive correlation,

\”“; The assessment of the magnitude of correlation requircs con-
siderable analysis and usually involves the caleulation of an index
known as the coefficient of correlation. This will be dealt wifh in
para. 4, but before we proceed to the analytical details therc are one
or two ge.;neral principles which should always be borne in mind.
.];he ap;;hc?ation of t_"hem to a given set of data may even indicate
:- ;:ltl latlsn ytical work is unnecessary and liable to produce misleading

In the first place it is important to see that the pairsof ohservations
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have some definite link quite apart from the association which it is
desired to measure. For instance, in Table I the link is that of
father and son, while in Table IT the pairs of rcadings rclate to the
same dav of the year.

Secondly, although the coefficient of correlation will nearly always
have to be found, it should be remembered that unless some
hypothesis is made concerning the mathematical form of the popula-¢
tion the parameters of which are to be estimated from the glvcn
data as set out in tabular form (as for instance in Table Il) fh\f:se
actually give more information than any single index 'cm do.
Careful examination of the data will often, therefore, £V uscful
information which is submerged in subsequent anah, t»Q:QI work., An
example of this will be given later.

Tinally, it must never be assumed that correlation implies
causation. Because x and v show a marked teQdencx to vary together
it must on no account be inferred thapd change in x will canse a
change in . \

An example will make this clf,;ar An Investigation of cases of
sunstroke in a series of years angd\ the amount of home-grown wheat
in those years would probabig, shm&ba mpiked degr&e of correlation
between the two factors although nuther could e said to influence
the other in any way.{ ’Kim true explanation would almost certainly
be that a hot summex ténds to produce a bumper harvest and many
cases of sunstrakG?;Two variables which are corrclated are, in fact,
very often bptlL affected by a common cause, or combination of
causes, h&t’?ﬁiy rarely is one causcd directly by the other,

2. .Sgéfter-diagrams.

“Amethod of representing the given data which naturally suggests
itself is to plot on squared paper the various associated values of
x and y, thus producing what is known as a scatfer-diagram.

For instance, the data given in T'able II could be represented by
the following scatter-diagram (Fig. 2) if the observations were
assumed to be concentrated at the mid-points of the intervals and
if the group “below 31° were taken a8 23-31 and the groups at the
other end treated similarly. Since the frequencics are small no

serious error would be involved.
Such a diagram does not usually of itself give any clear indication
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of the presence or otherwise of correlation and is open to the objec-
tion that it does not indicate the frequencies with which the pairs
of associated values are ohserved.,

This latter objection can be overcome by making u three-dimen-
sional figure, using a third variable z to represent the {requency,
but this conception is only of theoretical intercst.

In order to condense the information conveyed by the scatter-
diagram the following method is used.

N
A
N\S ¢
hutl >
o o 60
g3
e
E s 70
ag
o
§g
E-%'C 50
2 4w
3020 ’ SN ! 1 !
L L T &0 70 83
Wwﬂbﬁﬁﬂlfg?ﬁﬁéﬁt%gﬁlf}l degrees Fahrenheir
iY\ Fig. 2

Taking cach of}sg\‘{;ed value of x in turn, the mean value of }-"
corresponding 03t is plotted, the frequencies being allowed for in
the usual wayin calculating the means. Thus, corresponding to the
assumcq\.?gh.le of 35° minimum temperature, we
maxq&im temperatures of 40°,
qqepcl%:s 30, 50 and 10 respective

find assumed

50° and 60° oceurring with fre-

ly, giving a mean temperature of

e X w5 {30 X 40) + (50 x 50) + (10 x 60}] =487 approx.

. Similarly, the mean maximum temperat
minimum temperature of 43° 1s found to b
mean temperatures are indicated
round them.

ure corresponding to 2
€ 57° and so on. "T'hese
in the diagram by dots with rings

W.hen the data are extensive the simplification thus achieved by

plotting the means js considerable and the means themselves will

be fou.nd m general to lie on or near 5 Smooth curve known as a
regression curve,
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In the same way we could take each observed value of y in turn
and plot the mean value of x corresponding to it, thus obtaining a
sccond regression curve.

In the simplest examples these curves can be assumed to be
straight lines and the correlation is said to be linear.

In what follows, unless the contrary is stated, it will always be
assumed that lincar correlation is under discussion,

In Fig. 2 the data are so scanty that an attempt to fit a moré
claborate curve would be unjustified and the lines of regression
have been roughly sketched in. The mcan values of x are mdicated
by crosses. \

Having drawn the regression lines it is possible, 29 ml] be ex-
plained later, to deduce approximately the coeﬁicmn{\)}' corrclation.
The usual way of calculating this index is, howeves By the analytical
processes discussed in the next few paragrapb} At the same time
it should be emphaqlzcd that the analysis.is~ hs‘med on the assumpticn
that the correlation js linear and does(hot give any indication of
whether such an assumption is J‘Lls.t‘l‘ﬁﬁd. By plotting the means we
can throw considerable light on this very important point.

“w’\:\f:\-}.dbraulibrary,org,m
3. Analytical approach.
Suppose that we ha\{ N’pairs of observed values (xy, 31,), (%5, o), - -

[E 7 N (xn,yn)'ogcurrmg with frequencies fi, f5, ... f, (%j.f,:N).

Several of th 'xjs\may of course be cqual while the 9's differ {e.g. in
the example dealt with above the assumed minimum temperature
43° is as3eCiated with assumed maximum temperatures 40°, 50°,
60", 40 and 80°), and the same applics mutatis mutandis to the s,
-~ ]urst consider the regression line which passes through or near

¢ the mean values of ¥ found for cach observed value of x, and let

its equation be y=tmxtey,

where #1, and ¢, have to be found.

Actually it is more convenient to revert to the original data rather
than to deal with the various means.

The pair of values (¥,%,) denoted by F; in Fig. 3 occurs with
frequency f.
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The ordinate through P, cuts the line y=mxt¢, at 0, the
ordinate of which is m, x,+¢,.

Hence the distance O,/ =v,—m,x, —¢,.

If the line is to fit the data satisfactorily one obiious require-
ment is that the total of all distances such as O, should be wnall,
allowing for different signs cancelling and also for the frequencies
involved, i.e. we should expect Sf{y—myx,— o) to be small when
the summation extends over all the observations. N\

P;“ Rf‘,/ " '\"~\

M,

Fig..gt v

If we make this sum zero we bbtain

www.dbra u?%?y}?&}g’a{m +6 Eﬁ '

- P ¢
ot, dividing by &, ﬁl}mz I\J}Lxﬁ fit+ j\lrsz’
¢ \J
ie. L\ V=mx+c,

where 7 is the inean of all the y's and % is the mean of all the «7s,
Thus thie fegression line passes through the point (, ¥), which we
take qg\a:}sé'w origin, writing %=+ X, and y,= 4 Y,
The equation of the regression line is now Y=m, X and the
gl.%tance Ql=Y—m X,
\"\ The expression (Y —m X)), where the summation extends
N/ over all the observations, is essentially positive, but if the fit is

good it should be small. We therefore choose m
minimum,

For a minimum (m, being the variable),

1 SO 28 to make it a

d
Emzzfz (Yi—m X)) =o,
Le. "ZZf:Xr(Ye‘mlxt):O
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or X, Y, =m XX
) _IhA Y
and mlu—fﬁX%—. ...... (1)

If we divide the numerator and denominator by N, the number of
pairs of observations, the denominator I%.EﬁX? is o2, where
o, is the standard deviation of all the #’s. ~
Denoting the numerator %rz-fz}{ﬂ Y, by p, the slope of 1,:]:12 f

¢\
regression line, N
P " N
=, & (2
= . A %(2)
The equation of the line is AN
Y= Pr; X, \ i
L 0)\\«
or, referred to the original axes, ¢
LI\
(y-7)= (a,’-? N (2)

This is known as the line of recmsglc)ni of von x.
Similarly, the line of 1cgre5%ion. L passing lﬁlll%‘gg?l 81N ear the mean

values of x found for each vathye of v is known as the regression line

of x on y. ¢ \ﬁ
Denote its equation Dy ¥ =#2,y +¢p.
In Fig. 3 the ling\M, P, R, parallcl to the axis of x cuts this lme

at Rt ¢ \ \ /
The dlstance REP =y — My ¥y — Gy

Fora go\ ol fit we put
.~\‘~. XS (o — 1y, — €} =0

1\ ake Sf, (s, — myy,— ) 2 minimum,

The first of these equations readily reduces to
K=ty + 6
so that the second regression line also passes through (¥, ).
Taking axes through this point the second expression reduces to
SH(X—m Y

Differentiating with respect to the variable #2,, and proceeding
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about 48°F. If, however, v
{Jof the line of regression of y on

58 STATISTICS

a8 before, we find that for the expression to be a minimum
XY,
My= =t ot
X, Y3

i
where 0, is the standard deviation of the ¥'s.
Referred to the original axes the regression line of & on y is there-
fore _p ~ N
x—F=5(y—7). e X(3)
U'ﬂ @
The expressions f;, and % are known as coefficientsqf regression
Ty a9, R

or regression coefficients. N\ )

Before proceeding to the coefficient of correlation let us consider
exactly what the lines of regression enable hads do.

Take, for instance, the line of regressipaf v on x (Equation (3)).

This gives, for any value of x, the “cxpected value” of ¥ in the
sense that “expected value” is used)in the T heory of Probability.
We infer, therefore, not that thisivalue of ywill in fact correspond
to the chosen value of x in aygiven observation, but that if  large
number of wheerahtiolibyey fale always keeping « the same, the
mean value of the vagious' 3's would approximate closcly to the
value derived from fhecquation, as the number of observations was
increased., N

If the valughof % substituted in the equation is actually onc of
those inclyded'in the data the value of y found from the equation
will not geaerally be equal to the mean of the ¥'s in the data, For
instar;t:g} e found on p. 54 that the mean value of y (max. temp.)
corresponding to an assumed minimum temperaturc of 35° 7, was
ve substituted 35 for % in the equation

we should not expect to obtain
o : .
48°F. but a more reliable “expectation™ based on the whole of the

data, on the assumption that correlation was linear, :
Therefore to answer such questions as “What maximum tem-
perature would you expect to coriespond to
of 35°F.%”" we should uge the equation of the Iine of regression of
¥ on &, Similarly, the regression line of » op ¥ would give the

expected minimum temperature corresponding to a given maximum
temperature,

aminimum temperature
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4. Coefficient of correlation,
As was stated on p. 52, correlation is said to be
(i) positive if large values of x tend to correspond with large
vahues of y, and vice versa;
(1) negative if large values of x tend to correspond with small
values of y, and vice versa,
Very often, however, there is no apparent tendency for  and y to
vary together. Any given value of x seems to occur as often in

conjunction with large as with small values of y, and similarly),

any given value of y is associated with Jarge and small values of @

Correlation is then likely to be small, but we cannot be suzé, that

it is negligibie until we apply the tests derived from the Theory

of Sampling (Chapter TV). N\

If we take our origin at the means of x and y and denote thevalues

referred to this origin by X and Y as above: e\

(i) for positive correlation the values ofy XY will tead to be
large and positive; O

(i) for negative correlation the \aLu’es of XY will tend to be
large and negative;

(i) forga small dgt :gree of corrslg%l?gﬁu% RENQEELR XV wil be
small and fairly evenly divided between positive and negative
terms. )

In other words, if £, 1s the\frequuncv with which the values X, and

Y, are observed tog?t\hcr and X .=N, the expression p= \—:Ef?X,. Y,

scoms 2 useful m‘e}rshre of the extent and sign of the correlation,
Unfortunatély p reflects the scales used for x and y. By altering
the scale of%rther variable we alter p, while the correlation is of
course tht samc as before. Scale can best be allowed for by measuring
thelx"s"in terms of o, and the ¥’s in terms of ¢, This will be done
extetrisively when we come to consider Sampling,
If we take c—i— as our measurc of correlation it will be seen that
Lo
a change in the scale adopted for either x or y affects numerator and
denominater alike and the expression can claim to be an absolute
(as distinet from mercly relative) measure of the corrclation, It is
of course symmetrical in x and y and is known as the coefficient of

correlation (usually denoted by 7).

Q
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Coefficient of correlation r= —P—.
UJ." U'y.

Tn view of the above remarks about scale it seems more logical to
write the equation of the lines of regression in the formn:

y-y_ P x=% oo 7)
g, 0z0, O
and :E_—_Jg‘:__ﬁ__y—"}" ...... 18)

U;I..‘ . O'y. ,’,
Tt will now be seen that the first fuctor on the 11ghr hﬂm* side is

7 in both equations and the coeflicients of regression cau. pbe written

in the more usual forms: R w‘:
nty (coefficient of regression of y o'n.?js,){i‘- r i”, ..... {9)

» z
iy ( ” ‘x;.\\x‘on}r)———r-{;j....,,.(Io)
Finally we have r= xfm penen (11}

All these results should be mcmonza.,d
In practical work it is Versy desirable to set out the caleulations in

tabular form,\:m\smkﬂtamvhyadya@l:a # o, o, and p can all be derived
in turn.

The student is a,lfé}dy familiar with the method for calculating the
first four of the§€;\va1ues by selecting a convenient origin and scale

and making (shbsequent adjustments. The same can be done in
caleulating g

Byde}mnon p=x EﬁX} Y}, where X, and ¥, are measured from
th'\rr respective means,

v Buppose that we choose convenient origins so that the coordinates

of the point representing the observation are x,=X,+#% and
Y=Y+

We first calculate -}\IEﬁxiyn. This is generally called the produci

moment about the origin chosen, or, more correctly, about the
axes chosen,

; 1 1
Now Nzﬁxtyﬁﬁzﬂ(xz’!'f) (Y +7)

1
=N XY+ RN Y+ 72X, + 52,
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since ¥ and # are constants, viz. the distances of the mean from
the origin chosen.
Since X, and ¥, are measured from the mean, 2f, X,=%f, V,=0,
and we have L
N.;Eﬁx.f}'e =Py, e (12)

I -
p:;N,Eﬂx,y&—a;y. ...... (13)

In other words, we find the preduct moment, using any _gon-
venient arigin, and then derive p by deducting &y, where @s T
distance of the mcan of the ¥’s from the origin (allowingy for sign)
and 7 is the distance of the mean of the y’s from the 0r1g1n

The following examples should make this c!czi}e? and 1t is
essential that they should be closely studied and\every stage of the

working verified, N
'\ &
Example 1. PN
Culculate the coeflicient of corrcla;mn for the following scries of
observations: O

T\Q%.ﬁﬁ'ﬁu library.org.in

| s | Ao
i Aver age\\:lufmnb:? of ’ }},Vemge number of
! Year vieldof "\ yholesale Year yield ”f whalesale ;
| Consbls, | commodity Consols comnmodity i
' ‘duriggpyear prices during vear prices |
! CONY during vear durmg vear
. ’\, | —— _ - |
1810, WY 45 171 1823 | 38 107 ‘
IS\ | 47 | 164 1824 33 106 |
1812 5L o 147 1825 35 124 !
"1813 49 138 1826 3-8 108
<O 1814 45 137 1825 30 108
1815 | 5o 131 1828 36 97
1816 . 48 169 1829 33 g5
; 1817 41 141 1830 33 g7
1818 3¢ | 160 1831 3-8 99
1819 42 & I35 1832 1-6 94
i85z20 44 . 124 1813 34 qo
1821 40 113 1834 33 94
1822 3-8 100




62 STATISTICS

This is typical of the sirapler problems where frequencies nevit not be
specifically introduced as they are all unity, the table e sty Jy a st
Take as origins:

average yicld of Consols during year = g-o (variable v},
average index number during year = 120 {variable y).

Taking 1 as the unit of #, the work can be arranged as fullows:

T -1 ——m— = - — i ) O\
x | ¥ | o 1 3 v
. —— __ . .'.{\:\.
L i + o~ ) . - i\} >
5 | 51 [ 25 | 2001 0 255 % N
7 & 49 ng30 1Y
I1 | 27 | 121 [ '-_'s() Mv;{—_{“ :
q S ¥ | 30 i \i\ 262
5 17 bo2g ab <
O A - B~ e
8 | 31 ! 64. . 21 I 98
I I Nan i o
4o || {-[:1; 1,600 I 40
i ] i | Ny | 225 4 39
4 P4 ‘:L';‘“ 16 16 | 10 |
uwwcr r'auhb.nar‘ orEin | 49 —_ :
2 4 ! igh 28
2 l\ 1'5 4 } 160 26 .
TR 1 49 0 196 g8 i
5:,1 4 l 23 16 20
\i4 2| 144 ¢ 24 |
:,\;“,‘4 ] Iz \ 14 44 | 48 :
i”\.:' 4 23 I 16 529 02
’\\s,/ 7 25 \ 49 625 1y |
Q‘:.:; 5 ! 3 25 529 | 113 i
E"\:; 2 21 ]l 3 I : -
‘\w\)w 4 | 26 16 | 676 : ro4 I
/ 6 | 30 | 36 1 goo . 180 \!
7 \ 26 ‘ 49 ] 6?6 ! 182 :
|
i I

]_62 38 | 252257 | 78 1';,693 E 2398 148

It will be noti_ced that positive terms are shown on the left and negative
terms on the right of each column, This facilitates the additions and

Iesqec?s the likelihood of arithmetical errors which may arise 3f this is
not done.



ILLUSTRATIVE EXAMPLES 63

Since the total frequency is 25 we have

02— 58
x= P2 5e =-16 units,
25
G 2327257 -20 nnits,
25
, 98
o2=T_(160=313344,
25
o, = 56 units,
6 )
o2 = I3, ’_9_3 —(-20)* = 54768, N\ \)
0, = 234 Units, R "}":
8 _ P S # ¢ ..0
239 EIL —{-16)(—20)=go-03 unit&z\\‘

Coeflicient of correlati =993 _. X
‘ t elation » G6)(234) 0g ?H}?}wx

All the work has been done in class units but if the mean yield of
Consols and the standard deviation are rg:qi;jxéd in terms of the original
scale und origin we have the following, fesults.

Mean vield of Consols=4-0+ (-18){q])=4-010.

Standard deviation = 5-6 x 1 =wgby dbraulibrary.org.in

The mean index number ism}zo'-l 20=119-8,

~N

As a second examplgﬁb}us consider the data of Table T, which have

becn examined graphically earlier in this chapter.
The chief difigulty ariscs in determining the product moment denoted

Example 2.

above by Sy,

To dolthis, a simple device, used extensively, is to write the product
x,v, clo¥e to each frequency and then to insert fizy, but not to attempt
towgicite down fx,y, in one step.

\& little practical experience will convince the reader that the pre-
liminary step of calculating #,3; is well worth while.

In the following table x;y, is shown in the top left-hand corner of each
division and %y, is shown in the bottom right-hand corner.

As before, & represents minimum temperatures and ¥ maximum tern-
peratures, but the origin has been taken at the centre of the 39—47 group
(minimum temperatures) and the centre of the 5365 group {maximum
temperatures). The class-intervals have been taken as units, so that the
frequencics, assumed concentrated at the mid-points of the intervals,

N\
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oceur for values of x from —2 to +3 and for y from ~ 2 to + 3, although
the class-intervals arc different.

T'he line below the data marked ““"L'otal frequencies™ is self-explana-
tory. Since the “total frequency’” 20 occurs for = — 2 its first moment
about the origin of & is — 40, the first entry in the next line.

Similarly, the second moment is + 8o, as shown immediately below.

The last line, “Product moments of frequencies”, is obtained by
adding vertically the products fyx,y, previously inserted.

The columns on the right headed “Total frequencies”, etc. ars
obtained similarly, but now moments are about the origin of ¥, e.g:\f;hc
total frequency 45 oceurs for the value y=2, so that its first andsgeorid
moments are go and 180. The “Product moments of freqqupiEs” are
not needed a second time, since the bottom line gives us Sy, = 415.

The other columns and rows are added as shown ar}‘cKWé proceed as
follows: \¥;

r’:.
Il

=0 - 192 class units,

o D
£20 _(192)>= 1300, in terms'?{ql. 58 units,

0 _ . - z P
— 3y = —-082 class wits, AN
i

0% =§18— (— 082)? = 1-664, i\ terms of class units.

3
Product moment p =555 — (192)(—-082)
= C IR B in
. 4 p 1'153
Cocfficient of correldtion » = —— = ——="——==-782.
) T2 0 A1-300 X 1-664
X\, : . :

It will be noticed th;}all the work has been done in class units, which
is the simplest plamif-only r is required. N

In terms of deprecs Fahrenheit (as given in the original data)

Mean Iﬂlil;i\mum temperature =43 + 192 x 8=44'5° I'. approx,,
since thg'@gin is 43 and scale (class-interval) is 8.

Similatly, |
o Mean maximurm temperature =60+ 10 {—'082)=159-2" F. approx.

N\ obtain 4y 0, and p in terms of degrees we multiply ]ay 8, 10 and Bo
respectivelys the value of 7 is clearly unaffected, Ehus illustrating the
advantage of r rather than p as a measure of co%'rclatlon. )

No adjustment has been made for the error involved py assuring the
frequencies to be concentrated at the mid-points of the mt_ervals. Such
an adjustment is not usually made in calculating a coefficient of corre-
lation. It is not easy to adjust p and, unless the data are very cxtepswe,
to do so would be an unjustifiable refinement. The o’s can easily be
corrected, but there is no point in doing this if the numerator is not
dealt with.

Fuasiil

(=1

]

Il

Ly

Y| EHL
Il
o

L

5
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This cocfficient of correlation could be obtained approximately by
inspection from the diagram in which the lines of regression were
drawn (Fig. 2). These lines intersect at (%, ¥) and their slopes give
the coeflicients of regression,

The linc of regression of 3 on x Is

Fy= J’h?’_(r x),

and hence thc tangent of the angle whlch it makes with the a-alds is
43 o
7Y =m,. ¢\
Ty ."\ v
Similarly, the tangent of the angle which the othgr regressmn line
makes with the y-axis is

Tc— =y, . ,,\ '\'“
Oy ¥
The product gives #? approximately; cf, ecjl\la}tion (x1).
\ \
5. Properties of r, P \4

s

On p. 56 the coefficient of regﬁqmon my was found by making

a mitimum. ... :
W W c{ bramh;bm\lar f) m . ( I 4)
Sub%ntutmg for mj,ihls bccomes

57y %}X) =X V-2 VB "lﬁ”

to (13
It 1these g‘ré N pairs of observations, the first and last terms are
clear P 2
\“, NeZ and #2 Z—”— NoZ respectively,
e
) w’k‘lao . 21, X, Y, =Np=Nra,
~O

\§) Hence the rlght hand side of (15) redw'es to
\ :\ {::r —2?‘-0' +T202‘ N(I-—?’ )

But since §, is ajwa}s positive the expression {
positive or zero. ™

"

Ience 1—#? must Be positive or zero and

16) is essentially

—I1€r<I. (I"’

In other words, r cannnt be numerically greater than 1,

I.
\\
'

B
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The expression Y,~-r Xy,
Ty
previousty denoted by Y,—-m X,

gives the difference between the value Y, associated with X, and
the ordinate of the point on the regression line ¥'=m, X with the
same shscissa. '

Hence Tf,( V,—my X))%, which we haveseenreduces to N (1 —7%) o4
gives the sum of the squares of these differences or deviations. A

If r= + 1 cach of the deviations must be zero, since all the'tetas
of the summation are positive. That is to say, when thete'is po
“scattering ', but all the observations lie on the regression lines, the

Q"

correlation is perfect and 7= + 1 according as corgelation is positive.

or negative. {o, is not zero by hypothesis.)
If 7=o the expression (16) reduces to No2yle. the sum of the
squares of the deviation from ¥. o\ _
'This can happen only if the regressionline is parallel to the axis
~of % so that the average value of y fob every value of x is 7.
When this happens there is.’rfqlcbrrelation and the poin:cs of the
scatter-diagram do not tend <5 bustcttroibumysergight line.

6. Standard deviationg of'the sum or difference of two variables.

Suppose that we ha\e n values of a variable x with n}ean x anc}
standard de‘-'izltion:drx and also m values of a variable y with mean
and standard8¢viation 5,

]

T

1 "'\ ~
By d%ﬁ}ﬂ’on nE=x; noi=3%(x—%)?
A T4

[y

s £72) i3
and " Mmy=LY; mc§=211(y ~-y7*
a \ 1
N Now suppose that a new variable z i formed, where 2=x+3,
and that every value of & is associated with each value of y, thus
producing mn values of =. :
We can find the mean and standard dev
z as follows:

iation of these values of

=
]

1
2z

|~

z (themean) = -

ki

(x45).

[~

HMS =

3

n
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Although there are mn different values of x+y on the right-hand

side there are only # different valucs of x, each being repeated m
times.

T e
S =X
1 1
. . THEL e
Similarly Sy=nYw,
: ) 1
since there are only m different valucs of 3. O
1 e AN o
Hence Jf=p— mV‘x—t-?zLy AN
ma 1 :',\. o
% N
=1 [imni +nmy) N
wmh 4 K7, \
. N/ .
=F+7. O e (19)
If &, is the standard deviation, O
X’\ w
iy m?z
muoz=73, (z— %)= (*c X4 yw—;b
1
mn L ,’
=2 (x4 X (05 }*)+22( x—F)(y—5)
www dbrauhbl ax:y m_ (1 9)
T
As before, the term {F(x~x)* reduces to m \“ (x—ax)* and
¢\J ! T
T

)3 (} —yPto nx (y\y

”I he third term,ls a “true” summation in that all the ma terms are
different. T;b\&y can, however, be divided into sections as follows.

~g i . .
A pa}s\ic,uiar factor (x.—%) is associated with every term of the

.'\ _ ki3
ty&ejy,s—~y and the sum of these products is (x,—x) Y (3, —#).

4 . . i
\/ But since 7 is the mean of the y’s, 3, (y,—7) =c.
=1 -

In this way we can split up the third term of {1¢) into # groups
each of m terms the sum of which is zero.

. n N
Hence mugi=m N (x—XP+n L (y—5)
1 1
s =ma (o} of)
and o, \= Vol + ol

ceee{20)



3., OF 5UM GR DIFFERENCE OF TWO VARIABLES 69

In the same way it can be shown that if ¥=x —y, then F=x-7¥
and s

More generally, if #=x+v+tw=..., where each value of each
variable is associated with all the values of the other variables in turm,

F=Xtyviwa

and ' Uz=\;0£+0§,+612,1+.... ...... (z1)

. . . N

We sometimes have to deal, however, with a slightly different
problem. Suppose that we have n values of x with mean 7and
standard deviation ¢, and n values of y with mean y and standard

‘

deviation o,
Ifa new xanable z=x-+y is formed by assocmtmgeach value of

x with ene and only one value of y, corrclation ciit€rs'into the pro-
blem. As an example » might be the height of\a father and y the
helght of his eldest son, so that there is w. h,at\s sometimes called a

‘one-to-one correspondence’”. ’. >
7 o A
F= ,S_‘,(*c-l—y):x&—y, Y cen(22)

%1 w\«{'\;?jdbraulibrary,org,jn

) ™3

noi=%(z—Fy .

1

n ’\ .

=3 (&)

™ n ~ ~
=;E§~<x—f>2+fl;(y-w+z;(x—x)(y~y)}
"<1\ e (23)
Thes'ﬁ\rst two terms are clearly #o2 and noZ, but the third term

is qmte different from that dealt with before. \«Vc can no longer split

\p into groups such as (%, — %) Z{y,—7), since each x is associated

it
\1th one and only one y.
The term Z(u —X)(y —7) is, however, the expression previously

denoted by np, ie. nro,a,, where r is the coefficient of correlation

between x and y.

Noter Correlation cannot arise if the values of x and y are not paired
off but each value of one is associated with all the values of the other,
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Substituting in (23) we obtain:

8 e 2 2
ROy =noy+no,+ 201,00,

and ozz»\-"ci—i—frg-—i; 270,0,. o224}
Similarly, if 2=x—1y,

o, 1\-'{()‘3; n vl —z2ro 0,
and the result can be generalized for z=x + yrawd ...

It should be noted that correlation between every puir of variables
has to be allowed for,

o K
Example 3, )

In Example 5 of Chapter II let us suppose that 5000 of th’QL}i\'Cé are
assured for £200 cach and the other sooo for £ 100 each. (..}‘.

The first group may give rise to claims for o, Aro0fiod, Looo, ..
£1,000,000 according as o, 1, 2, ... 5000 deaths OCCUFaN,

The scalc is clearly £200 and it was shown in\Ghupter JI that for a
binomial distribution such as this the mean .i\s\“ngh and the standard
deviation Avapq. <

Hence the mean in this group of sooo Ii¥es is

£200 x 5000 % '01 24 10,000
and the Standard»&’&f%ﬁ“ﬂiﬂjbl_‘ary;ér_gg_.in _
£20045808 % o1 x ‘99,

The other group gives rise to%claims for 0, £100, £200, ... f300,000,
the scale being now £1004*

The mean is thereforé fijooo and the standard deviation is

p L1co \-Jsooo X 0T X -99..

"The total claioisef the form x + v, where » refers to claims in multiples
of £200 and yrtg elaims in multiples of £1co.

The mc"al\n"sf'ziim s &+7,1e.

N\ £10,000 4 L3000 = £ 15,000, as we should expect.

T .’handard deviation

N

4 ..\’: $

'"\ "/ = \-'Ilc.rz[—o'_g
N =+/(200%+ 100%) 5000 % 01 x 99
=£L1573,
The probable error is therefore 07 % L1553 =
reduce the chance of claims for more 1

total premium should be

£{15,000+ 1054) or £1. 15, 5d. per cent. approx.

No questifm of correlation arises here, since any life assured for £100
can be associated with every life assured for £zo00.

L1034 approx., and to
than £15,000 to one-guarter, the
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7. Non-linear regression.

When the means of the #'s and »’s of the scatter-diagram cannot
reasonably be assumed to lic on straight lines the preceding analysis
breaks down and 7 is misleading as a measure of the relationship
berween & and y.

It will be remembered that for linear regression we fitted a line
Y=m X to the data, where m LAY e value of ¥ othus

P 1 nol ~
obtaincd being the “best” value or expectation corresponding to
the value X. ' <\)

If we denote the “best” value corresponding to X, by ,Y{.,\while
the actual observed values are ¥y, ¥y, ¥y, e€tc, thenl "i”ﬂ’-——leE

oy Gy E{}%\

=Y -TTOSS
Cl'y G'ﬂ \?;10' T ¥
the value previously denoted by 7. Y o

Erom this point of view r is the rafiohof the standard deviation
of the estimated values read off fron” ‘the regression line to the
standard deviation of the original ' é;qn-‘a_tions Y, Y, etc.

Very often a curve is more g,t\fi‘{a“éle]%h?fﬁlhbsﬁafﬁg?ﬁﬂfﬂb for showing
the relationship between X' and y, and it will be seen later that the
process of graduatiox}iig‘.\in effect the fitting of a curve showing
correlation between*age (v) and mortality {y), the graduated curve
being a curvilinedr Fegression line.

From sucha‘eurve the values of ¥ corresponding to each ¥ can
be measurédrand oy caleulated. Actually this is the same as oy,

A
where 02{15
i

' measured from the origin instead of from the mean.
§
Ty Fy ca

for all values of £, &

S o=l a, and

n be regarded as a measure of correlation and uniess
mregli'c'ssion is linear it is known as the index of correlation.

) Inthe special case where the regression curve passes through all

the mean s g,/gy is called the correlation ratio 2nd 1s usually

represented by 4.
The reader will now be in a position to appreciate (and criticize)

the following definitions of correlation:

(1) If two quantities vary in sympathy so that 2 movement in
one tends to be accompanied by a moveraent in the other,

they are said to be correlated..
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(2) Two variables are said to be correlated when we do not find
afixed value of the one variable equally likely to be associated

with different values of the other.

We close this chapter with an example which presents many

- points of interest,

Example 4.

. N\
The following data have been collected for the purpase of investisating:

the correlation betwecn the duration of life of married and w il ined
women and the number of children. Calculate the corrclation cpellicent
and mention any approximate measures which might be used toindicate

the extent of the correlation, stating the objections to thesgdncasures.

Find an cquation for the regression
length of life of the mother and plot

| Table showing ages at death in quinquennial age tlnq’;g(f}iiu:fu‘:gcﬂ:‘i?'II:; .
1 &roups, of rog3 wives and widows, with particulars ' Adebrding to nummber |
of the number of children 2 of children '
| Central age|  No. of i Total no, |Averad€ 0. No. of No. ol
atdeath ! deaths . of children i of cilid¥en  children deuths
20 29 36 “":2‘1-2 i o 24
25 87 151 AN 17 I 130
: libdaryiorg.i ?

30 \a\rw(jaj dbrauli 2683;1“3;' T8 mz‘ﬁ 5 122

33 109 458 44 3 134

40 9o ~OE50 50 4 1L

8 d\J .

45 7 ({437 50 5 106

50 64, 370 58 6 83

55 N 331 61 7 91

6o MN6g 430 62 8 81

65 73 447 61 9 77

0" 83 547 66 Io 58

725'\ 77 590 7 I1 23

oS 78 547 70 1z | 24

,»\:"}35 59 368 67 13 135

) 9 20 212 82 14 6

95 7 5o : 71 I3 2

100 4 35 8-8 16 2

- . ; - —— 17 e

- g o — — _ 18 2

e Lo Gsme = [~ | ess

of the number of children on the
this on a graph together with any
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information from the given data which will show whether the regression
line is satisfactory. On consideration of your graph state whether the
corrclation cocficient may be regarded as the best mcasure in this
particular case.

The following additional information is given:

Mean age at death ... 53202

Standard deviation of age at death calculated 4091
on a unit of 5 years A
Standard deviation of number of children 37409 a
¢\

To investigate correlation we should expect the data to be given in'the
form of a double-entry table with (say) age at death along the'top (x) and
number of children down the left-hand side (3), the cl’asfsf-intén'al for »
being taken as 5 years. ~ ‘

Actually we are not given the data to fill in thesguares but wc are
given the total of each column, i.e. the number Qf:deaths for a specified
central age at death, and also the total of e{(’:h’\hne, i.e. the number of
deaths for a specified pumber of childreaz{ o

The columa * Average number of .children” is unnecessary, since it
can be obtaincd by dividing the “ Fopal number of ch_lldren” at cach
central age by the number of d@?&.%ﬁtb‘f}é% i %F)I(to}v}-‘lllfnhowever, be
found uscful later on. N e

value of x, i.e. the total frequency for each

er of children, and also s f for
for each number of children

¥ .
We are given X f for E&h

 central age at death '&ésf)ective of pumb
each valuc of , de. the total frequency

v .
irrespective ofdgt of mother at death. (¥ is uscd to denote sumtnation
mation with regard to x.) Henee we could

N iy
with rega{ci}ﬂ v and X sum _
\ three of these values are given,

calculate’?, o,, ¥ and o, in the usual way;
but they should be checked as an exercise.
~Fhe only difficulty is in finding the product moment Zfay. .
"\; “The method normally used breaks dewn l_)ecause we do not know t}?e
\ individual values of f for every pair of associated values of x and ¥ We
are given the total number of children for cach central age at death but

not how manv mothers dying at that age left o, 1,2, 3 -0 children.
, t central age at

The given data are in fact the values of _Efy for eac
death, where y represents the oumber of children and f the frequency.

To deduce Sfxy is a simple matter, since & is the same for all the values
in a given column. _ )

We assume the frequencies concentrated at the r_n%d-pomt of the
intervals and take the class-interval as the unit. The origin of x (the age)
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is taken at 55. There is little to be gained by altering the origin of 3. The
work is as follows:

Table ¥V
i o, of No. of FProduct meouents
! Age . deaths children {1) > (3}
* Sf ) Ly
W I Lt N T € I
P &
-7 29 36 : 232 o\
-0 &7 151 gofh ™
-3 99 261 1,305,
-4 109 478 191200
-3 00 450 1350
-z 87 1 437 AN
— T 64 3?0 'L:\ v 3-;0
Q i 54 33T Ny
I 69 439N, N 430
2 73 44 | 894
3 83 “:{"54‘7 : 1,641
4 Toulibiai, 599 | 2,360
i d libeary. . K
I At S 2,735
6 39N | 308 2,388
7 i \“2:5 212 I,4584
8 N7 50 400
_ 9 i | \\ 4 35 3 IS
o ;s N e PR _ . ]
TotahN&/ 1095 5770 — 6,660+ 12,647
D _ | ; =5,678

e’

"Q&’;‘ly? (the mean number of children per death) =2IT8 = 5.204.
w\;\fThcrc is thus 1o need to refer to the last two columns agivcn in the
{ rl'?ta unless it is desired to check the given value of o

” The product-moment about the chosen origins is 2878,

The values of the means are - e

&=1 (53-292 — 55) class units, measured from 55,
= —-3410 class units,

¥ = 5260,

~ pipreduct moment about the means) :iggg +(-3416) (5-269)

=0983,
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Coefficient of corrclation = P _ 6‘985__
ooy (4°091)(3°409)
=50 approx.

Note that since p and o, are both expressed in class units there is no
need to make any adjustment. '

An approximate value of 7 can be obtained as follows.

For each value of & we are given not the frequencies with which cach
number of children was observed but the average number of children,
We cannot therefore draw a scatter-diagram, but we can at once plot
the mean value of ¥ for each value of » and try to fit a straight line PN
inspection. As & increases from 20 to 100, i.c. 16 units of 5 years, the mead
value of y increases from 12 to 8:8, i.e. by 7°6. A

o N

Hence my, the slope of the regression line, is roughly ’1 5 \\

Since my = » v , this gives
O a\,/
76 4001 i
y=L 1 =57 ‘..\
161409 PN
The observations at ages 20 and 100 arey, however, very scanty, and
it seems preferable fo base an estim%“gf‘:{@gﬁhe figures for ages 30 and 9o,
taking the mean value at age 9o a8 ¥ad Rraulparang-gegdbetter run of
the figures there. ~ T
. . : {4001
On this basis mlzﬁ and/ r}-éi.— —9-—:-54.
12 \~.~’ 12 3’%09
‘I'he objection to botlt thﬁe estimates is of course that they are based on
observations at two agesonly and not on the general run of the means.
3 T . . . .
The cquation of fhe-fegression line of yonxis

x~
O\Y

—_ (E =
A,\\“" J’*J’—?’%(x ),
. 7 '.“:.' 3.409 L.
or WO y_s-zﬁgz-si.a;l-(mt 3416).

3
Reverting to the original sc

3409 (X —355 )
LA M —ap T — "4 16
Y — 5269 54-0(;{( - 3410}

3
or Y = 083X + -84, approx.

ale of & and the original axes, this becomes

"This line is drawn on the diagram on P. 76 together with the points

representing the mean values of  for each value of x.
A glance at these means shows that they cannot in fact be represented




76 ' STATISTICS

satisfactorily by a straight line, i.e. that the regression is nen-linear. The
cocfficient of corrclation calculated is thereforc misleading.

The curve shown seems to be a reasonably good approximation to the
run of the values and may be taken as the curve of regression.

From general considerations we should expect that from age 20 to 43
the number of children would increase with the age at death, since the
size of family must depend to a large extent on the duration of life during
the child-bearing period. Once age 43 has been passed, hawever, we
should not expect the number to increasc cxcept to the very small C\T“e\t
which reflects the superior vitality of healthy women w ho hayeJatger
families than the average. ~

'T'he average mimber of children increascs fairly regularly ﬂawu rfh out.
The explanation is almost certainly to be found in the fugt'that the given
data relate in all probability to the deaths of marricd womnen and w idows
over a short period of time; if the average age Ay mbt]m hood 13 taken
a3 30, this means that women dying at go had thew Shildren 6o years ago
when large families wore the rule rather than the exception. ‘wuml?rl}_
those dying at 6o had their children on t,}jé\;iverage about 30 vears ago.

Thus the regression curve reflects tha ¥atfiation of number of children
not so much with age of mother at death as with the period when the
children were born. The chief fauwr ‘operating has thus been a steadily
falling birth-rage/ v dbra uhbrary \WOIg.in

This question illustrates the difficulties involved in interpreting the
results of an investigationdhto correlation,

2\
L 3

Gl

iffcjr@n
Hi
e

T
=

30

3
7/

Average number of hi
3 3

[ I LA N [N W SO NN NN SN SN N RSN M N T N R |
)25 30 35 40 43 50 35 &0 63 FO 73 6D 45 G0 T 100

Age of mother at death

Diagram. Regression of number of children on length of life of mother.



77

BIBLIOGRAPHY

Freguency Curcves and Correlation. Sir WiLL1aM P, ELDFRTON. Londen,
1938,

An Introduction to the Theory of Statistics, chaps. 1%, 13 and 16. G. UnNY
Yore and M. G. Kexpart., London, 1948

An Tutroduction to Medical Statistics. A. BraDprorp HILL. London,

1048.

EXAMPLES 3

1. A random sample of 170 cases has been taken fromythe new policies
issued in 1936 by a certain life office, and the distribhiien of the sample
with regard to age at entry and sum agsured 1s fogx@,tb be as follows:

B Surn assured Z\N\/ | Total no
Age group |- - j O ] : fo dl'nie'
£50 | ALroo L2004 +4500 | f1000 | OF polictes
—— —w&bi?m-l-rbrmrm'g‘tw ]
15-24 18 20§ o8 2 — 46
2534 21 26 QY6 5 1 59
35—44 0 9 {i 3 6 1 29
4554 7 ) {“8}\ 3 4 — 24
55-64 8 \\’3 1 — _-—__.12__ !
Total no, of 6_1, > 66 21 17 2 170
| policies Pa \d
i ’* 7 . -

Caleula (he coeflicient of correlation between age and sum assured
(2) using.only the data for ages at entry up to 44, and (b) using all the
datq\(ﬁﬁmment on your results.

~\J

\2 The following table shows th
assurances cffected in 5o Insurance

expense ratio of these Offices for the same year.

Calculate the coefficient of correldtion between the ave

Assured and the expense ratio,

¢ average Sum Assured under now
Offices in a particular year, and the

rage pew Sum
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! Average | Average I| Averane ! i

l sum Expense sum Expense sum | Lxpenss
assured ratio assured | rarn assll‘rw_i ! ratlo |
784 | 1261 91 1070 N 1544 !
189 | 1683 673 | 2291 S0y . 20023 "
301 2374 1002 1 L4ES g L 18I |
355 | 1328 597, 1804 S5 | 17 "\Tl
687 2226 340 1 1670 =57 ] 13{4{) .
596 1372 363 | 1489 835 1 AN ‘
=48 | 1621 1067 15°33 718 j 432
660 2375 646 | 1381 703, 0) 2148 |
goo 15°G0 498 i 1698 &1 1621 |
629 2428 621 1368 G068 1542 |
699 12-28 626 | 1590 35 031 I rgrog |
474 | 2071 922 \ I 710 1473 \
|} 932 i 1775 404 1390, 195 1730 |
Log4r L 1363 28y | ayer 807 e |
‘ 68g ‘ 1603 606 W\ 1777 636 2000 |

g7 | 13580 675 N 1394 1002 i VI3
lo535 | zozg 1018 1649 \
' L brassy or SR S -

Total new Sum Assured (less re-

+8 3 .
Ny surances given off
The average Sum Assured=-— assurances gIVen )

Total number of new policies

Total expenses for the year less § per cent
of single premiums

¢
Expg'gﬁ'mtio =

NS

% Do you consider the coeflicicnt, as calculated, a good measure of
) C‘}“ell?tm_n (if any) between the class of business {as measured by size
of policy) and the cost of conducting the business? Give reasons.

Assuming that any data you require are availuble, how would you
talculate an improved coefficient ? |

Total premium, income for year (iew and rencwal)
less single premiums

2 &

3. Lxplain briefly the terms ““li - y : ‘¢
i ne : “jent ¢
correlation”. of regression” and coeflic
A.Il H - .
undernn;:;eitlgm?n’ ‘bastad upon the data relative to 500 lives of the
between th age distribution, has been made as to the degrecof cotrrelation
for which : aie,l.x  at the date of the investigation and the total sum, %
each lifc is assured. As a result it has been found that the
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equations of the lines of regression of ¥ on x and of x on ¥, taking the unit
of ¥ as 100, are respectively

BXx—57V+ 142=0
and : 125x»~57.y—4.65":0}
Calculate (2) the mean value of ¥

(b) the standard deviation of 1;
{£) the coefficient of correlation between x and v,

Age | No. of 11:\.'65 Age i No. of lives |
31 | 29 41 | 23 '\'\"\
32 28 42, 26 O
33 28 43 24 N
3 0 8 44 24 47
33 j 27 45 24 ¢\b
36 ! 26 46 23\
|
37 1 20 47 ! Y,
38 : 26 48 : "f}zz
E LI 26 49 ’C",\ 21
30 25 50 O 19

4. You are glvcn the followmg«rmfdjmwhhm veapgdnof the ages of

husbands and wives: N\
Difference |
A ) KNo, of { \No of hetween age of | Frequency |
Sfe group husband N wives . husband and | of occurrence
. \\ i age of wife¥ |

15— & 7 144 ~15 | 2

20— :5:12 700g ; —I0 : 7

25— :~\:\6If) 448 -5 140

30— \\ J 212 134 0 699

352N\ 72 56 ‘ 5 526

y S\ 39 12 10 131

2 28z 15 ‘ 37

i \'SO_' 23 ! Ly : 20 ! I35

55 17 9 I

Ho— ; 13 5 30 ; 3

65— 1o 4 35 I

;?: . i j ! Total S ¥
—- - | I
Total 1377 1577 | ’ i

* The difference has been calculated by deducting the central age of the age-
group of the wife from the central age of the age-group of her husband.
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Calculate the coefficient of correlation between the age of husband
and the age of wife,

5. An office has investigated its mortality experience undur Whole
Life Policies With Profits. The rate of mortality of the non-medical
business is ¢, and of the medical and non-medical business combined ¢,
Given the exposed to risk in the non-medical class to be £, and in the
combined classes E,, find the coefficient of correlation between ¢, and 9,
Hence find the standard deviation of ¢}, —¢,. A

=S

6. 'The table below gives the values of y observed for fizef Falues of
in eight separate investigations of similar data under simiigkr conditions.
Caleulate the cocflicient of correlation between y and % and plot the
regression line of 3 on x. ‘ ‘\

Comimnent on your results in the light of the fiefher information that
¥ is r00,000q,, g, having been arrived at h}\\\the normal methods of

observations of exposurcs and deaths, \ &
5] - | T . =
R : | » . :
L A i = 8
APyt ANTs s 7 B
30; =238 a1 2371 248! 246 | 244 239

g0 38 W“’4‘i‘é“”1‘$fé“."°‘4%i 349. 413 350, 400

5ol 782 746 &W| 70| 755 Soo| 746 728
6o| 1,983 1,993 |¢1933 2,013 2,053 1,053| 1,853 2,012
70| 5302, 53 $127 8,227 5126 g027| 5,304 5,300
8o | 12,972 ‘ 12,;8J 12,660 ‘ 13,410 12,846 12,470 12,850 113,409
P~ o
N
’\5
\‘w,‘
;'.\\



CHAPTER IV

SAMPLING

1. We are all familiar with samples in everyday life and the
purpose of sampling in the theory of statistics is very much what onc
would expect: to obtain information about a large body of databy
examining a much smaller sclection made in such a way as(te'be
representative. The work falls into threc main di\fisiogrs}"x%fhich
may conveniently be dealt with separately: 0
(1) The construction of the sample. D
(2) The analysis of the sample. O
(3) Induction and inference from the rcg}{fs})f this analysis.
The following terms will be used freguently in discussing sam-
pling: o\
2. Definitions. W\fw:diﬁraulibl‘ary.01‘g.in
“Universe” or “Population®\ The large body of data from
which the sample is -f}%umed to have been drawn, is known as
the ynizverse, or in aétiarial work as the pepulation.
“Statistic’” and © l’arz:&xeter % A function such as a mean, standard
deviation or eeefiicient of correlation caleulated from a sample
is know Zzis\a statistic; if it is based on the universe it is
knowmrasa parameter.
“Errorg™and ‘‘Deviations™. It will be found that we often
Have to consider the difference between the value of an index
~Lderived from a sample (a statistic) and the value derived from
N/ the universe (the parameter). This difference is referred to in
statistics as the error and does not imply that any mistake
has been made. The term deviafion, which is sometimes used,

is perhaps preferable.

3. When the sample is all the available data.
Quite often the selection of data has already been done by force

of circumstance and we are given our sample ready-made”. For
6

Fuagiil
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instance, actuaries wish to know how mortality changes from time
to time, and In this country the samples with which they work
consist of returns made by British Lifc Offices, the results of censuses
and returns of births and deaths, and so on,

A point which usually causes difficulty to the beginner is that
functions such as rates of mortality derived from the whole (or
nearly the whole) of the available data should neverthuless e
regarded as values derived from a sample and subject to samphing
errors. RAY,

It should be borne in mind that the purpose of alghortality
investigation is not to obtain a record of mortalitg™dctually ex-
perienced but to produce rates of mortality whicéx{'buld probably
have been revealed if the data had been unlimitéd in extent.

For instance, the years 192429 had t‘leir\i)}\-'ll peculiaritics, such
as epidemics, unusually scvere weathery ffeedom from ary Imajor
war, and so on. The object of an investigation into the data for these
years for producing the A 1924~29 ¥able was not to eliminate all
these features but to form an esgixﬁzife of the results in an “ average”
vear. This “averagéb’i'?'éli@ﬁl;ﬁ-éﬁ&-f“a\ferage” man, does not exist.
Although the whole of the available data were apparently used for
the A 1924-29 Table aiidNin similar investigations, sampling errors
were bound to arixcb\'f)ec’:ause of limitations of numbers and scope.

Any population will be subject, from vear to year, to random
fluctuations, nihich will appear as sampling errors in any investiga-
tion i.nvolv,@@ the population.

Similasly, in the construction of the English Life Tables the data
shouldbe regarded as a sample even if cvery life in England and
Wales had been correctly observed and the facts relating to that
...\fli:fe.correctly incorporated. The force of this will be more fully
\Vappreciated when we come to consider graduation.

4, Random sampling,

When the sample has to be constructed the ideal would be to
form a microcosm similar in all respects to
course, ont a very much smaller scale.
information about the untverse (otherw
sample] this is impossible,

the universe but, of
As we have only limited
ise we should not need a
but a good approximation can be
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abtained by selecting the constituent elements of the sample at
random from the universe. We may say that a sample of » in-
dividuals is taken at random from a universe if all possible samples
of # had an equal chance of being selected.

"I'his sounds a2 simple matter, but in practice it is exceedingly
difficult to avoid bias owing to personal idiosyncrasics or other
factors even more difficult to identify or control. If it is possible ,
to assign a numiber or other identifying symbol to cach member of
the universe a good way of forming a random sample is to dra®
tickets with the numbers on them from a drum in which thef have
been thoroughly mixed. This can rarcly be done and"bfas}. necarly
always creeps into the work, though its presencegity not be
detceted. To appreciate the practical difficulties JEis essential to
read accounts of actual investigations, and theSthdent is strongly
recommended to study two very interestin ‘Papers on “Enquiry
by Sample” contributed by Mr J. Hiltg 16 the Royal Statistical
Society and.reproduced in Reprints’;9:38”.

5. Systematic methods of samp]‘.ii;g;'

The student should app‘f@é’i‘é:ﬁb'fﬁﬁwﬁﬁl%ﬂ%“sample may be
constructed by a systemati®\ process, For instance, a political
agent who wished to for;zi“a\n estimate of the strength of the parties
in a given district might Instruct canvassers to call at every tenth
house and provided ‘there were no deviation from this strict rule
the sample would{probably be random since there is no reason to
expect politjgzi}\\“’iews to be associated with number of the house.

So longas'the sample is random with respect to the character or
characters to be measured it is likely that this method will lead to
a_tyrdy representative sclection of individuals.

%} ‘Stratified sampling.

Here the body of data is split into groups or “‘strata” by pur-
posive means and one or more represcntatives from cach group

are selected at random.

Suppose, for example, that a manufacturer of electric-light bulbs
wishes to know what current passes through themata givenstandard
voltage, what candle-power they develop, and how many hours
“life” they have. T'o do this he might select a hundred bulbs by

G2
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walking into the stock room and picking out a bulb here and there,
thus hoping to obtain a random sample. Almost certainly bias would
be much greater than he realized: for instance, he would probably
tend to pick from the centre rather than the edges, from the top layer
rather than any other and to pick clean bulbs rather than dirty ones.
None of these points may be of importance, but the sample could
not be described as random and results deduced from it might Joe
misleading. IFor a purposive sample he might take cvery hit-
dredth bulb turned out by each machine. On the face of ¥ithe
sample thus produced would be representative in that perém\n al bias
seems to have been eliminated. The danger of thi§ Thethod is,
however, that the “period” of the sampling nka{i:’oincide with
some “period” in the output. For instance, if dahachine bas {ive
moulds for making the glass bulb itself, saysample formed by
selecting every hundredth bulb would m{an that only one mould
was really being tested. Again if the copitStarted each day when the
first shift went on duty the first nipe’ty'—nine of each day’s output
would never be represented igithe sample. If 2 guaruntee of
performance i5 giyem by iheampnifaaturers it is impertant that all
the bulbs, including those made at the beginning of the day, should
be properly represented.in ‘the sample,
Alternatively the dﬁtﬁut of cach machine might be taken as
a stratum and spegimeéns selccted from each by some truly random
method, as far@s“possible independent of any human Operator.
This would Be* stratified sampling
As ar\e,hr’{ar'nple of the pitfalls which would trap the unwary let us
suppogithat the works manager decided to take a bulb from each
ch\.hifa_e every time his telephone bell rang. As there is no apparent
~eonnection between his telephone calls and the quality of the output
his might at first appear a satisfactory way of constructing a sample.
‘There are, however, many serious objections, such as the fact
that telephone calls are not usually distributed aver the working day
in a random manner, while the selection of bulbs from all machines
ata given time would tend to introduce correlation which would be
difficult to assess or control.
A better method wonld be to decide the times at which drawings
were to be made for each machine indepcndently by druwing
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numbered tickets from a drum. In many factories, however, each

article is numbered and a satisfactory and convenient way of

constructing a sample would be as follows. Suppose the output of

one machine for a given day had numbers H 43293 to H 43726 while

the output of another had numbers K 83662 to K 84403, For the

first machine discs with one of the numbers o9 on each could be

drawn from a bag and replaced after the number had been recorded, »
thus producing a random series such as

4396254387.... R
If these were marked off in threes we should obtain 4
439, 625, 438, ... AN

as the last three figures of the numbers of the bulbeto be drawn;
i.e. we should select \ !
H 43439, H 43625, H43438007,
any number less than H 432¢5 or greater tT}a'fl}-I 43726 being ignored.
Similarly, each of the other machines ¢auld be dealt with and the
sample obtained in this way should B¢ ¥ree from scrious bias.
W w;d,l;rfé;' ulibrary.org.in

7. Simple sampling. N

There is a particular fornof random sampling, known as simple
sampling, which is of s;gf\éia’l importance, The reader will be familiar
with problems in probability invelving the drawing of balls from
an urn or cards ffom a pack when the object drawn is always re-
placed before, fhe next drawing. The essential feature of such a
problem isgthfat the probability of drawing any one object is the
same a‘s\tkat" of drawing any other and this probability is the same
when the last draw is made as it was at the beginning,
wslzli\’.‘ilzltﬂplt‘, sampling it is assumed that every individual in the

iverse is equally likely to be chosen in the sample and that the
universe is so large that when the sample is extracted the remainder
is to all intents and purposes the same as the original universe. T'hus
the chance of drawing a particular individual for inclusion in the
sample at the nth draw is the same as it was when the sampling
commenced. For simple sampling it is also assumed that the chance
of drawing any individual is independent of that of drawing any
other.
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This should be borne in mind in considering mortality statistics,
which are usually far from hemogeneous and which arc affected
in such 2 way by wars, epidemics, etc. that it is not true to say that
the chance of death of any one individual is independent of the
chance of death of any other, '

8. Analysis of the sample, ~

This is usually a straightforward matter and the methods, pre-
viously described are used to calculate convenient indices ;c{é‘x;}rcss
the main characteristics. The algebraic functions, suck’ as the
mean, standard deviation and coefficient of correlafion} arc most
commonly used, as they are good estimates_ofl the paramcters
involved in normal theory. \%

9. Inference and deduction from the sa::np}é
There are three main types of problcm} N

(@) when both the universe and,th;:' ;given sample arc available
for analysis; X 'jf:'"
{6y when onlpassdmpld hgﬁﬁﬁng.in

{¢) when two or more- sé}hples are given but the universe is

unknown. }

(@) is probably ﬂ\gléast important, {6} is most commonly met
with in actuarial(work, and (¢} is common in enquiries into social
questions, edud4tion, housing, hygiene, and so on.

Under (@) the question to be considered is whether the given
sampl%;?ll’kely to have been drawn from the given universe by
rangiqr'r} or other unbiased sampling. We might, for instance, be
given records of the heights of a hundred adult males and also the

_miean height and standard deviation of the height of all adult
males in England and Wales,

If we found the mean and standard deviation for the sample it
is extremely unlikely that they would coincide exactly with the
figures for all England and Wales (our “universe”). For a sample
of ten we should be prepared for large discrepancies, for a sample
of five hundred we should, as we say, expect “average” results,
The point to be decided is what sort of discrepancies are likely to
arse in a sample of a given size if it were selected in some unbiased
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way from the universe. If we found that the sample values differed
from those for the universe by improbable amounts we should
suspect that the sample was not taken from that universe {e.g. they
might be 2 hundred Norwegians) or else that bias had crept in
(e.g. by selecting the sample from a particular district or a particular
trade).

() When only a sample is available we use it to estimate con-,
ditions in the universe by testing a hypothesis or set of hypotheges
about the universe. A very common example Is testing an cstmmfe
of & parameter {universe value) by comparing it with a $tatistic
(samnple value). We might, for instance, wish to test a gively that
the average height of males over 21 years of age i Encrland and
Wales was ¢ ft. 83 in. by measuring a representati¥fc sdmple of, say,
two hundred and calculating the sample mean

In mortality statistics the hypothesis sp Gfies that the rates of
mortality in the population are those givefy by the graduated table,
and that any discrepancy between the rate derived from the data
and the graduated rate is due memlv to sampling crrors. We can
find approximately the prob‘éfbili’k?bhﬁ‘!fthﬁ%’ﬁs’sel‘ﬂd& discrepancy or
one still greater would arise in“this way, a large discrepancy corre-
sponding to a small proba’\l‘)ility If the probability is very small
we suspect that the\@;pothesm about the population rates is
fallacious; we suspgct that the rates of mortality in the graduated
table do not represent the facts as far as we can judge from the
observations a.de. It may seem that {a) and () are almost in-
distinguishable, but there is a fundamental difference. In (&) the
par’zmctc’ib known and the sample is being tested. In (b} the
paranieter is not known but an estimate of it {often based on the
sathple) is being tested by means of the sample.

() When we are given two or more samples we try to ascertain
whether the universes from which they were taken are likely
to be the same (or similar) or whether they are different. For
instance, the drug M and B 693 has been found to give good
results in the treatment of pneumonia. As it is impossible to
collect statistics of all cases, whether treated by the drug or not, a
random sample might be taken of, say, two hundred cases so treated
and another sample of two hundred as far as possible similar to
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the first in every respect (e.g. age distribution) and subjected to
identical treatment except for the administration of the drug. As
a result of the analysis of the samples we might be able to say that
the differences between the two samples could not be explained
as due to paucity of data and sampling errors, but were probably
due to a real difference in the universes from which they were taken.

In (@}, (b) and (c) we try to arrive at a probability that samgpling
would give rise to an error equal to or greater than the error observed.
This usually causes difficulty to the student, who asks, ‘,‘Y&-"\ﬁ}-— not
try to estimatc the probability of obtaining the observed ector owing
to paucity of data? Why include larger errors?” T hefre.;‘ison is that
the probability of obtaining a given error is 'mjosa%ninglcss if the
variable is continuous (as it usually is). ’

It will be remembered that in applying/Caltulus to questions in
Probability we had to deal with prqb?}lﬁ'liticx relating to small
intervals, Thus on p. 308 of Matheigtics for Actuarial Students,
Part II, a typical example invgh"es“the probability that a man
arrived in Londonflljaemit_:gl} : and t+dt from the beginning of the
year. The probability that ﬁ}é?érrﬁ?é: at exact time ¢ is zero,

Similarly, in statistics€here cannot be the probability of obtain-
in a given sampling,e’f%r if the variable is continuous; what we
evaluate is the pro‘ba\bi'lity of obtaining an crror greater than that
actually obserydd> As the student will no doubt cxpect, this
function is fepresented by an integral. Before however we can
deal with “\t}ﬁé integral we must consider sampling distributions.

10._ .§'$Jpling distributions.
o ~Suppose that from a universe of N we take every possible sample
3\ ofn. There will be ¥C,, such samples because, although a particular
value or event may be repeated several times in N, each of these
values or events may be considered as a separate “individual” for
the purposes of sampling. For each sample we can calculate some
index such as ¢, the standard deviation of the sample, and group the
results into a frequency distribution, which we can if we wish
represent graphically as a histogram, If the number of samples is
very great the class-interval used in drawing the histogram can be
reduced. By taking a very large number of samples, each of »
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individuals, and calculating the standard deviation of each, we shall
ultimately arrive at a smooth curve showing how the values of o
are distributed,

Similarly, we could find how the means of the samples were
distributed and could arrive at, or at least approximate to, a smooth
curve representing this distribution of the sample means—the
“sampling distribution of the means”. In the previous paragraph/
we discussed the sampling distribution of the standard deviatign;
it two variables were present we could imagine a sampling dlstnbu-
tion of the coefficient of correlation, one value being {,alculatt,d for
each sample. N

Trom the above it seems necessary not only to calQulate a given
statistic (say the mcan) for the sample of n obséryations but to
construct all the other possible samples of # indiwiduals and calculate
the statistic for each in order to form somc\ﬁca of the sampling
distribution. PN

11, Normal sampling dnstnbutlons

A considerable literature’ ‘e‘eiéfbf a%hfaﬁmﬁlﬁlﬁ{g distributions.
In most instances, however, it'is assumed that the populations
follow the normal curve, Ac(ual experiments based on extensive data
indicate that this av,smqg\ﬁon is 2 good approximation in most cases
although it is unlikely, that many distributions are really accurately
represented by an§’stich simple law.

For practlcakpurposeb we nearly always assume that samplmg
distribution§™dre normal. (An important exception will be men-
tioned la’§ when we come to the x? test.) This assumption is
usuall\' appromrnatelv correct if #, the number of values involved

‘téle statistic, is large but it should be made only in large sample

theory.

12, RBiased and unbiased estimates.

The expected value of a statistic can be expressed in terms of the
population parameters. On intuitive grounds we use the observed
values of statistics as estimates of population parameters. If the
population paramcter which 1t is desired to estimate is, in fact,
equal to the expected value of the statistic employed the latter is
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said to be an unbiased estimate of the parameter. J'or example, the
mean of a sample of # values is an unbiased estimate of the
population mean.

On the other hand, the sample standard deviation, s, is not an
unbiased estimate of the population standard deviation, . Such
an estimate is called a binsed estimaie.

To appreciate why s is a biased estimate of ¢ we pote that, in
calculating s the deviation of each observed value is measuredhfrom
the sample mean while, in calculating o the corrcg}'mnding{de?-iations
are measured from the population mean. The mean squawt deviation
of # values is a minimum when measured from e Twean of those
values, so that s will, on the average, be less g}Qﬁ'the parameter o
and will be a biased estimate. L'or large sauigles, however, this bias
is negligible and we shall assume in this bedk'that ull estimates used
are unbiased. \’\

NN

13. Standard error.

Although, as we have seen in® the previous paragraph, the cxpected
value of a statfstic HRHYRIBRN 9B e ory may be assumed cqual to
the parameter a little cofisideration will show that the standard
deviation of the samphing distribution, which is defined as the
standard error of tﬁés’tatistic, will not approximate to the paramcter
a, the standardhdeViation in the population. Thus the statistic *“ the
mean of a, s&mPle of # individuals” will tend to be a much more
stable gyagtity than the individuals themselves and hence the
starQ;’ljd’ error of the mean should be much less than ¢. As we shall
seg, tlie standard error of the mean is oiyn.

31t is important to notice that, apart from bias, the accuracy to be

~expected of an estimate is important, For an unbiased estimate this
will be appropriately measured by the standard error of the
statistic employed.

Expressions have been obtained for the standard errors of most
of the well known statistics but the theoretical work involved is
usually difficult and we shall content ourselves with dealing with
two of the simplest: a class frequency and the mean. The results
for other statistics are quoted in section 16 of this chapter.
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14. Standard error of a class frequency.

Sometimes the universe is divided into different classcs and we
may be interested in the numbers in the various classes or class
frequencies in a given sample, For instance, women may be
divided into single, married and widowed (including divorced).
Obvicusly the class frequencies shown in a sample will not be
comparable with the class frequencies in the universe, and for
this reason we usually deal with “proportionate class frequencies”
found by dividing the class frequencies by the total numbeg o
the sample or the universe as the case may be. Thus, if ouaf a
sample of 250 women 104 were married we should say/thot the
class frequency for married women was 104 and the p\ré’portionate
class frequency -416. )

Let us assume that for a particular class the'proportionate
frequency in the universe is ¢ and that we drawdrandom sample of 7.

Assuming that the laws of simple pronal')fll}ty apply, the chance
that all # arc in the given class is g%, Similafly, the chance that# —1x
are in the given class and one is not is%C g» 7 p, and, gencrally, the
chance that 7 are in the givenwc\'fg\fe;sg?rfal%h PP TR 1 — 7 are not
is “C,q"pn—, where p=1—¢.,

Hence, if we took a very large number S of random samples,
each of # observations, “Qé should expect the class frequencies to be

distributed as follows 1
N No. of samples in which

Class:ﬁ;&]ﬁcncy the frequency is observed
O 7 Sgn
\O” n-r SCygip
O\ n—2z S*Cog"p?
m; ;\’: ’ ;, N ﬂ,CT?'r.‘pﬂ—’r
Q : :
2 S “Cu—g gepn-‘z
I S, _qpmt
o 5 P‘N

Total S(p+gr=5

Our sampling distribution is in fact the successive terms in the
expansion of S(g +p)*. We know therefore that the mean iz #g and
the standard error /ppg {see Chapter 11, pp. 32, 33)-
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If instcad we had considered the proportionate frequency we

should have had a mean value ¢ and standard error / ‘bf or 1{nth of
?

the values for the class frequency itself.
We therefore have the important results for a sample of 2.

Blcan value  Standard ervor

Class frequency ng NPy @)
"\ .f;f; fj 2 '\: N
Proportionate class frequency g ,ff W NS 7 (2)
AN

Note. Although the mean valuc of the class frcqucmf}-' id not of course
the class frequency in the universe, the general pife docs apply for the
proportionate class frequency, which is indepindent of the number
concerned, RN

K7
15, Normal approximation to sa,ni,'lhing distribution of a pro-
portionate class frequency. \.J

Having obtained the meanvar.{i’d"standard crror of a proportionate
class frequency dis-abiveyrgrergenally assume that the saropling
distribution roughly follows the normal curve. This seems at first
inexplicable when }}*‘Q know that the actyal distribution is the
successive terms c@{g}%— p)". The chief reasons for the assumption
are as follows A\By'a suitable choice of origin and scale any normal
distributiogx.\'t:an be reduced to the standard form y=e-1, for
which eﬂéaustive sets of tables are available. The curve is in fact
adegdatgély “mapped”. The distribution (g + £)* cannot, however,
b\::?‘ uced fo a simple standard form and, except in speciaf

"il)}»stances, the numerical work of expansion is prohibitive. The
~\ second reason is the fact that the normal curve is (Uite a good

approximation to the binomial distribution provided that either ¢

is roughly equal to p or n is very large. (The normal curve is of
xR

course y =3¢ 2Zp¢, where the origin of x is taken at g, the mean.}

The following tables, given by H. L. Seal in his interesting
paper *“Tests of a Mortality Table Graduation (J.1.4. Vol. Lxx1),
illustrate this point. The notation has been altered and the way in
which the ordinates have been selected for comparison will be
apparent only after the original paper has been read.
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"00h7 0063 6062 0058 -0049 -0046
‘0030 - 0023 0025 0021 0020 eled £
Qa3 1 o007 etel &3 0007 -0008 -000%
‘o0ah | o002 -0003 0002 0003 {001
0002 i 0001 0002 0001 -000I 0000 |
-0001 0000 0001 0000 0000
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It will be seen therefore that within fairly wide limits values
derived from the normal curve are good approximations to the
true binomial values, This is particularly so in the neighibourhood
of the mean (the origin).

16. Standard error of the mean.

The second index with which we shall deal is the mean of the
sample, and we shall first prove the almost self-evidengafabt that
the mean of all the sample means is the mean of pl{c\u\ll.i&'ersc.
Suppose that the universe consists of /N variatgs Mdcenoted by
Uy, Uy, Ug ... Uy, the values being measured fl‘omf's‘c’ﬁ.*:‘te convenient
origin, R4

The number of different samples of n'¢ach’ which can be con-
structed is ¥C,,, which for convenie_rxl%}w‘c shall denote by .
'This applies even if several of the #’s dr&%equal, since each ohserva-
tion has a separate individuality Although its values may coincide
with that of some other obscrvafion.

Denote the values in the rih Sample by

ww digaylibty ovg in v
Then the sample mean,

ey oo Upips

g T
\\‘q;f?'zn{ﬂr:l'i" I‘!J“:B—F ... +?'"r:u}'

The meamyof’all the m sample means is therefore
N\

I O: ¢~ I
?E(MTQ_ZM‘E-P'"JHM’_F vt fm)=%{(u1:1+n1:2-l-- oty )
"‘\”’ +(u2._1+”.+153m)+...+(um:1+rzm;2+ o )

“\.f:" Clearly each # appears in ¥-1C, _, of these brackets {once in cach),

« thus making the total number of terms N NG, 1 =n O, =um,
as it should, there being m samples of # each.

Hence the expression for the mean of the samnple means reduces to

! v
- a1 (U Fap+ .+ ).

Since m=~C,, this becomes

1
E(ul-lruﬁ g+ .. ay)

or the mean of the universe,
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To find the standard error of the sample means, take the universe
mean as origin and denote the observed values measured from it by

Uy, gy .- Uy +o0 Ty, 80 that Mo.=o.
i

The mean of the rth sample measured from the new origin is
given by .
jl/I-;=?_z(‘Z’]v‘:lJ'_'E“r:2+"'“i'vf':ﬂ)s

N

using an obvious extension of the previous notation. (\H
‘I'he standard deviation of all the sample means, o,;, is{given
by the relation N

maly ={MP+ M@+ M2+ ..+ MY (O

{since by the previous paragraph the mcan of the M’s is our new

origin}; i.c. \\“
matoh={(0y t Ot o H U (B 1“|'E)~z*.\a~‘\’r v
+H{Tnat Uty SN S (3)
If we expand the right-hand s1de aﬂd collect like terms it will
reduce to the form Wy cnm aulibrary.org.in

A+ ovi+.. +@'§)+2B(ﬂlw3+vlz3+ T+,

since although for convenlence we have used two suffixes to denote
the sample considere an ‘the observation in the sample, there are
in fact only N dlﬂerqnt ¢'s and each of them will occur in many
samples, \<&

Any given pwill occur in ¥-1C,_, samples and therefore in this
nuraber E}qckets on the right-hand side of (3). Hence on col-

ecting lik& terms the coefficient 4 of each 2? will be NG

bu@hirly, any two given o's, 7, and o, say, will occur in 5 2(,,, N
gimples, and hence the coefficient 2B of each term such as o, 2, will
B 51,

We have thercfore

mndel, =N1C, | (e3+od+...+ok)+2V 0, s (vot ).

Since the ¢'s are measured from the mean:
v+ Uyt HUN=O
S 2(0y 0t e Yt YT )= — (iRt o).
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Substituting in (4):
mited, =10, —¥2C, o) (@il )
But ¢+ 9vi+... 4o \.--j\ o2, where & 13 the St‘lnddld deviation
of the universe and m="C,, so that we finally have

o N=2
2 C-n---l Cu 2—‘ 3

Su=—"" x ' ?12
N -no? O
“Noiw ';'.;j‘\(5)
If NV is large we can assume that N —# is not very diffi¢tgnt from
N —1 and write - ' (»’.‘;' e
Uyp= , 7o \ IR (0

\H <
This gives us the standard error, i.e. the Sté;gﬁrd deviation of
the sampling distribution of the mean m fetnis of o the standard
deviation of the universe. €
Similarly, expressions have been obtcnncd for the standard errors
of most of the well-known statlsncs ‘but the proofs are generally
difficult and beyond the scope, Qf this book, They are set out for

convenience\iy bhélfbﬁld@ﬁgxgbl% ignd should be memorized.

Standard evrovs of Z{SH shnown statistics basrd o7 xamp!rvq of n

Index \\ g Stiﬁ%‘:rd Remarlks
“. o T -
Class freque@ev (ng) Nupg ' g is the proportionate class
Propnrnbnate class Ipg J frequency in the universe
\r&qucncy @ o and p=1-¢
o A
Mean (1) -
) N | o is the standard deviation of
_ - G % the universe |
Standard deviation (o) - i
& 20 ;, i
Cocficient of corre- 1—# r is the coefficient of corre-
lation (r) ‘ N lation in the universe.

The mean class frequency in #g and the means of the other
indices are the corresponding values in the universe.

U .
The formula - _ for the standard error of a standard deviation
N2
lar”;e’l‘hesc formulac are approximate and should generally be used only if # is
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applies exactly only if the standard deviation is itsclf derived from
a normal distribution. It does not therefore strictly apply to the
standard deviation of a binemial distribution, although in practice
it is so applied. The general formula for the standard error of a

standard deviation is -
{ g — Ha
*
4jiz 7l

which however is largely of théoretical interest.
We are now in a position to deal with the types of problem
mentioned on p. 86. : A

17. When information about the universe is available@.f;’

As has been stated, the problem is to find whether thésample is
likelv to have been obtained from the universe by tdndom or other
unbiased sampling. To do this we cxamine thosgs\tatistics in which
we are particularly interested; usually these intiude the mean and
the standard deviation. \

Suppose, for instance, that a headmaster’wished to know how the
standard of English teaching in hisyé(:hnol compared with that of
the general body of schoold” &h‘ﬂ‘éﬁt’i&l‘.@%&ﬁi’ﬁ)ﬂe the results of
(say) the School Certificate examination, treating his own school as
a sample, Q

He might decide o’\:tal’;e four “classes”: under 239 marks,
25~40 %, marks, 5074 % marks and 75 % marks and over. Suppose
that he obtaineq {hé"followi.ng results for his school, which sent in
a hundred cqn@iﬂatcs for the English papers, for which the maxi-

mum possiilemarks were 250:
P \" 5 Results for
3

\ School the whole country
NIG‘\RI}' ‘mark 105 170
#Stundard deviation of marks 22 20

\Proportion with less than 259, marks 18 per cent 16 per cent

1 25—49% marks 30 " 26 ]
» 50-74% marks 38 48,
) Yeohandover 1 . 10

We know that the standard error of the mean is given by the

20

formula o/z which in this example gives V100 =20, as there are

100 candidates,

Faoag il
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We now assume that if all possible samples of 100 were tuken, the
mean marks found from them would be normally distributed with
a mean of 170 {the mcan mark for the universe} and standard
deviation z2-o.

The actuzal sample has a2 mean 163, i.e. 5 less than the universe
mean. §=2-5, so that the difference between the universe and
sample means is two-and-a-half times the standard error. A

Now we know from Chapter I, p. 36, that about g5 3 péetcent
of the area of a normal curve lies between the ouhnalc e and
997 per cent lics between the ordinates + 30, so that fheé chunce of
a random value lyving further from the mean lh:m«” 3o s small
(say 1o approximately). ¢ g

In other words, the results for that year lrldlL:lt(-: that the schiool
is below the general level to an extent w hlkhm unlikely to be due to
sampling errors, {

“\‘.

a .
Similarly, the standard error of the standard deviation is —=.: in
N 21

»,'

this example, ~ @Hr% v @Q}g}’% rg.in

As the sampling dlSt‘I’lbUthﬂ has a mean of 20 and a standard
error of 1-4 we expectxmost of the sample values of ¢ to Lic within
+3 %14 of the &Aalle 20. Actually the value 22 calculated for the
given school fes about one-and-a-half times the standard error
from the wiifverse value and we cannot say that the school s
abnormgr}\in' the “scatter™ of its marks,

ﬂhﬂy we can comparc the four proportionate class frequencies.
lai;E for example, the class 30-74 marks, for which the propor-

‘tmhate class frequencies are -38 for the sample and 48 for the
“Universe.

The standard error of the sampling distribution of the propor-
tionate class frequency is

Jpq J (4%) ( _-5

The absolute magnitude of the dlfferencc between the proportionate
class frequencies for the sample and the universe is

48 —18=-10.
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This difference is twice the standard error and is probably
therefore significant of a real difference between the sample and
the universe.

Similarly, the other classes could be dealt with and the final
conclusion would be that as regards that year’s results the school
was below the average,

(In this last section we have tacitly assumed that the normal law
holds for g. The inaccuracy cannot be great.) ‘

O\
18. When only the sample is available for anaiysis, O

In the second type of problem we cannot evaluate thé" sfandard
crrors accurately since we do not know the paramet(,rs Accordmgly
we have to fall back upon the sample values as apprbmmations and

Iy
take, for example, -,_ for the standard error of\the mean, where s is
Y H

the sample value of o. It can be shown th}t it is more satisfactory

g
to take —--S— for the standard erron Df t“he mean, using the form -
N1 AT Cfbrauhbrary org.in AR

only when the parameter o is known The difference produced by
replacing # by z—1 1s only appremable when #» is small and for most
purposes can be i gnored m@ctuanal work. For a proof the reader is
referred to An Intﬂ\i{aﬁzon to the Theory of Statistics (see Biblio-
graphy).

Hitherto we hzi\ae ‘assumed the normal curve giving the sampling
d1str1butloq,t{J“bc known since we have had the mean and standard
error giyvemy™

Nogw, gwever, the standard error is only approximate and we
do, ncﬂz know the value which should be assumed for the mean of

'the sampling distribution.
" Consider the following diagram:

a4
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A represents the value of the statistic considered. We caloulate
the standard error s of the statistic, using the sample values of
any necessary constants, and assume that this is a sufiiciently good
approximation to the true standard crror,

We then measure distances Oy 4, 4O, equal to 2" and draw
normal curves with O, and O, as origins and with s° as standard
deviation. The truc sampling distribution might follow citI{;r of
these curves or any curve of the same shape in between thiam, but
the origin of the true curve is unlikely to lie outside the :zauige 0,0,

To see why this is so consider the curve with mean Oy 11t were
the sampling curve the crror Oy A of the sample™value would be
twice the standard error, s,

Now although such an error may arise it i;“‘}}athcr unlikely to be
exceeded. Similarly, if the true curve weEd the one with mean 0,
we should have an crror A0, equal $62y".

It should not be assumed that 2% a sort of ** foot-rule’” t test
whether an error is likely or uqﬁkély, but for many purposed it is
convenicnt to regard it as a likélﬂr upper limit. An error of as rpuch
as 38", 45" 0rwe\{r\évﬁdlf?%%-%gg%ggﬁ#,n but while some autliors ul 3¢
as an upper limit to théverror likely to arise, such a criteridn i3
severe. It will be rélembered that if the sampling distribution is

‘in fact normal ghevchance of an error arising as large as or larger

than 35" is ogly about 0027 (sec p. 36).

We may§ay therefore that, if 4 is the value of an index calculated
from q.gﬁmple and 5" is the approximate standard crror, the true
val%“:s,f' the index is unlikely to lie outside the range

£ A—-25" to A+25

‘ ,ifz.{r'hd very unlikely to lie outside the range

A\
Y,
\ 3

A—3s" to A+13s.
Ezample 1
On p. 65 of Chapter ITI we found a coefficient of correlation =82 for
a sample of 363,
1~ {-782)

The approximate standard error is therefore — ' =-020. The

v136
true value of # found from unlimited observations Eni\-‘ be as low as
782 -2 (-020}, i.e. 742, or even 782 =13 (-0z0), i.e. -722: but is untikely
to be less. Thus very marked correlation does exist and the value of the
parameter can be fixed within fairly narrow limits.
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19. Test of a hypothesis.

Although the above method of approach is often used to make
deductions from sample values, it is more logical to proceed on the
lines previously indicated, i.c. to decide on a hypothesis about the
universe and test its validity by means of the sample,

"Thus in the previous example we might adopt the hypothesis
thut the true coefficient of correlation was only -7.4. Taking thc,\

2]

1—{(74)

standard error as - . =024, we proceed as follows: A
V305 (™
O
observed value —assumed value=-782—-74=-042. ™
The probability that a value chosen at random li€s Within a
distance -042 of the mean R4
fdE v
2 .
= J e i dx, \
Namade 7y N
NN

Putting &= ox' =024, this reduces,tq

v

2 (Ui 8

- \«:{:\!w_cﬁ}}_?‘%i?l@‘al'y_org_irl

N2 ey

Table I in the Appendix givésithe value -9203 for this integral.,
T'he probability that a ¥alide differs from the mean by more than

P ty A )

-042 is therefore onl{:\i..—’-gzos:-o;gs and the chance that it is

less than the meamby more than -042 is half this, i.e. ‘o4 approx.
"I'his is so smaj{Mhat our hypothesis seems improbable and the

true coeﬂicie&t:@f ‘correlation is unlikely to be as low as “74.
$

: \$~
20. P;ééi.;ility levels.
E\dﬁ’ihe normal curve in its simplest form

A
\ ) 1 %
y = == g 2

Y¥iT

the probability that a value chosen at random differs from the mean
by more than K, say, is given by the expression

K g s
I_zf — ¢ 2 dx, e (7)

0 A2
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Hitherto we have found the probabilities for given values of K,
but for many purposes it is convenient to fix the probability and use
equation (7) to find the corresponding value of A",

Tables have been prepared for various probability levels (e
are called), the values most commonly used for the proll draw
being 50, 5, 1 and -1 per cent, At the foot of Table | in the Apnindard
figures are given for twelve useful probability levels, lier of

Probability levels are frequently met with in connectica, bt
guarantees given by manufacturers as to the performance TENN
products. For instance, a firm sclling wire cables mightol’&ﬂbwcrc
a result of a large number of tests, that the breaking st;a;i:ﬁ buld be
ticular type of cable followed roughly the normal digtributio
mean M and standard deviation o. A guarantee GSfperforme to be
usually essential and it may be decided to fix it sé‘?ﬁat not mora|n O,
one rope in a thousand would be returned S\mnsatisfactory. |

Suppose that the appropriate guaran,t’é;@%'strain is M—Kq test
hypothesis the probability that a cablechosen at random has ag it is
breaking strain is ;. Since the di¥tribution is roughly nn"imch

this is also theyprethustib it %‘Ea‘ﬁ’ie has a breaking strain g 38’

than M+ K. &N dn is
Hence the chance that ‘arandom value differs from the ion is
by Ko or more is ToIg. Oh-boz. wger

The prepared tab@s.éhow for the normal curve with unit stan
deviation what wahte'of X corresponds to the probability level ‘ated
Having obtained-the value of K in this way the manufacturer coula
guarantee a:lér\caking strain of 47 — Ko with the knowledge that only
about ope@ope in a thousand would be rejected as below standard.
Incic}thally only about one rope in a thousand would stand a
higher breaking strain than M+ Ko, but this would not be of

. practical importance.

\ It is important to remember that prepared tables do not dis-
tinguish between values greater or less than the mean. They give
probabilities that a random value will Jie within a given distance of
the mean (cither above or below 1t} and care should be taken to
allow for this. For instance, in the above example the probability
of 1555 taken as the standard had to be doubled s0 as to include the
probability of breaking strains in excess of the mean,
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21, Further remarks on correlation.

It will be noticed that Example 1 deals with correlation. Ttis in
this connection that tests for what is known as “‘significance” are
ticularly important, 1f any two series of numbers are written
vn at random, or if two quite unconnected sets of pairs arc taken
g. number of the house and salary of the owner), the usual process
| give us a coefficient of correlation which may be positive or
rative, but is very unlikely to be exactly zero, A significance tesf )
uld almost certainly show, however, that the whole of €lus
parent correlation may be due to errors of sampling and ghﬁu the
iverse value of » is probably zero. &O
Before attempting to draw any conclusions it is essential therefore
test all cocfficients of carrelation by comparing them with the
andard error. 1/ which is appropriate ith'h}s'casc gince our
'pothesis is that correlation in the univer;f;i;é wero, Care must be
ken in the interpretation of correlation ‘edefficients cven when
ey are found to be significant. N

Suppose that an unskillcd“iHvaERAYr WiREE b find if births
and deaths werc correlated and dbtained his data by taking the
births and deaths in a numbez{of towns In a given year. The births
and deaths might quite gvelk show a marked degree of correlation
which, while not spu.riqé in itself, might cause some very mis-
leading rcsults to he(drawn. In actual fact the number of births is
the result of twp,faétors, the birth-rate and the population of the
town (or mofe)Correctly the female population of child-bearing
ages), and &l ilarly the number of deaths reflects the product of
the dea{fx.—‘i‘ate and the population of the town. The result of the
invéé‘&igzition is very probably duc therefore to the corrclation of the
“wiifhts”, viz. the female population of child-bearing age and the
total population of the town, and not to any interdependence of
the fundamental birth-rates and death-rates, When the functions
dealt with are compositc and reflect the combined operation of a
fundamental variable and sets of ““weights’ such as the populations
above, any correlation shown may arise simply from the *“weights”

and should be further analyscd.
Tn statistics we sometimes meet time series which may be defined
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as records of the values of variables taken at regular intervals of
time. Correlation between two series is often spurious in that it
reflects only the result of changing conditions on two quite unrelated
variables. In an address given to the Roval Statistical Socicty
(J.R.S.5. Vol. Lxxxix, p. 1) (. Udny Yule gives an interesting
example of what he calls “nonsense correlation” between two
series. The first showed the proportion of Church of Ingland
marriages to all marriages in the years 1866 to 1911, while thegetond
was formed by the standardized mortality of 1ooo persons, i Bugland
and Wales for the same years, The coeflicient of cogrélation was
+95, with a standard error of only -o14. This is, lowever, duc to
the fact that over the period considered both the ¥afiables decreased
fairly steadily, so that both might be said tolbev” correlated”” with
time. It is probable that some of the cop@la‘cion in Example 1 of
Chapter 111 is spurious, since we are gié\hiing with two time series
over the years 1810 to 1834. \4

22. Comparison of two sampfg:;.“

For the sat‘i@fﬁ‘ét%?‘?a%%%%% iSofl Bf two samples it is usually
desirable to compare {I}earié, standard deviations, and, in some
cases, class frcquenczi{zsi\ Generally, tests for significance have to be
restricted to the filnetions whose standard errors can be found. One
obvious way of @gmparing the two sample values of a given index
(say, the meaiis as follows:

If 3, igxhe€ value for one sample, and o, its standard error, then
the “t1e”™ value of the index is unlikely to be outside the range
M, L3, to M+ 20, and still less likely to lie outside M, — 37, to
Ayt 30, Similarly, if M, and o, refer to the second sample, the
“\“true” value for the universe from which it was drawn should be
between M, —20, and M,+- 20, or, at any rate, between My—30,
and M,+ 30, If the ranges M, —2a; to M+ 20, and M,— 20, to
M+ 20, do not overlap the two samples are very unlikely to be
drawn from the same universe, because the parameter cannot lic
within a distance 2o, of M, and at the same time lie within a distance
20, of M,. 'L'his test is, however, much too severe for general use,
for the following reason. We know from Chapter 11, p. 36, that in
a normal distribution the chance of a value selected at random
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lying farther than 2o from the mean is 1 —+9545, 1.€. 0455, which is
small; but if the ranges M, —20y to M, +20; and M,—20, to
M,+ 20, in the above test did not overlap, the true or universe
values of the index would be the same only if M, and also M,
lay more than twice the standard error from the paramcter. The
probability of this is (-0455)%, or about 1 in 480.

"'o arrive at a more satisfactory test let us consider the difference
M4, — M, between the two sample indices.

In Chapter 11T it was shown that if  is the difference between(h,
two varitables x and v, G'z——-\-'[;'ﬁi {formula (2¢)), if no correlati@n
exists between x and y, or AN\

o, =l +od —or g-;ccr_y (formula (24)), \‘ ’

if correlation does exist.

Now a standard error is merely another naméufor a standard
deviation and it follows therefore that in our pfevious notation the
standard error of M, — M is o2+ o2, provided that we are satisfled
that correlation does not exist between, the‘two samples.

A direct comparison of M. l‘i“ﬂfédskﬁﬁ?l\ﬂé}_%@}&g)xﬁl@lthen indicate
whether there is any strong evidetice that the means of the oniverses
from which the samples are drawn are unequal.

3

7\,
Example 2. \\

'The heights of rog-eri are recorded and it 18 found that the mean
height is 5 ft. g in, antl the standard df:\riation 23410, A SC‘COild sampl.e of
oo men gives g, \m’}a"n height 5 ft. 7 in. and standard deviation 2-23 1.

To form 3 \opinion as to whether the samples are drawn from. the

same or different universes we compare both the means and the standard

dcviatiqr\aé,"'
Kglilé the formula ; , the standard error of the first mean is
\n

224 . _ .0l in
- i, =224 1.
100

the second mean is '223 In. Assuming

Similarly, the standard error of
therefore that there is no correlation petween the samples the standard

. ool A a_..
error of the difference in the means 1§ ¥ ('_224)2 +(-223)" =315 approx.
The actual difference is 2 in. or about 6 times the standard error and

this cannot therefore be accounted for by sampling errors.
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.. - o
To test the standard deviations we use the formula —— for the stanchurd
Nan

error of a standard deviation. The standard error of the first sample

. 224 . . .
standard deviation = :4' m.=-158in., and the same valuc applies
4200
approximately for the sccond sample. Hence the standard error of the
difference of the standard deviations is approximately

Ve8P (138 = 22 in, roughly. Q

"The actual difference is only -o1 in., so that there is certainly 21 pyidence
here of significant difference, 'S\

The test of the standard deviations is only of theorcticil interest as
the differcnce in the means has already given convinding cvidence that
the samples have not been drawn from the sanlg;‘{krﬁ{-'crsc. If this test
had been inconclusive we should have testedthe hypothesis that the
samples came from universes with similar sta,gdard deviutions, This is an
instance when the argument discussed, &M D. 104 could have been
employed as follows: N\

Using three timcs the standard ergde¥s the maximum error likelv to
arise we find that the mean heightlin the universe from which the first
sample is dray \ri\ﬁ_HB%&l}’bﬁ%r}:ﬁ Ssile the range g ft. g in. =672 in,,
Le. it is unlikely to be greater than 5 ft. g6 in. or less than 5 ft, 837 in
Similarly, the mean height ibthe universe from which the second sample
1s drawn is unlikely to lighotitside the range § ft. 7 in. + +669g in, "I'he upper
limit of this range, i.cx}‘l&. 707 in., does not fall within the first range and
hence it is very unlikely that the two universes are the same,

23. Amalg‘a}x{ation of samples.

It vgill;}e remembered that, in evaluating the formulae for the
A\ — o I—7? .
S’Ea;pahrd EITOIS N 1y, N VA and so on, the values of the indices

g, ‘e and ¥ should be taken from the universe.,

Unfortunately this is impossible because the only available data
are thosc included in the sample or samples; we are therefore faced
with the difficulty of making the best estimate we can. In large
sample work it is usually sufficient to take the sample value as an
approximation to the corresponding parameter but if the number
in the sample is small it is necessary to reduce bias; thus, if 5 is the
standard deviation in a sample of n, we should use sivn—1 and not
s$/v'n as an estimate of the standard error of the mesz.
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If we are considering more than one sample it is important to
specify clearly the hypothesis which is being tested since this
affccts the way in which any parameters are estimated. Suppose,
for instance, that twe samples of #; and 7, observations respectively
with means m, and m, and standard deviations s, and s, are being
considered. We might decide to test whetber the means differ
significantly and to do this we set up the hypothesis that the samples
have been drawn from universes with the same mean (we do not
specify that they should have the same standard deviation as wee IO\
are not testing the difference between s, and 5a)- ' O ’

'The best estimate we can make of the common mean of thessvo
populations js formed by amalgamating them and taking théymean
(7,112, £ 7y} (my + 71y of the combined data. The estim’iii}s of the

standard errors of the means of the two population{qre then
N

sﬁ'\-'rnl-f and  spiNm,— I”'\‘:.
or simply ‘glllf\fﬁ—l and 5, /vm, :C" }

If we assume no correlatign g, tien, ggggy*_\('){ i s3iny as the
estimate of the standard error of the difference Th the means by
which to test the observed diffegénce |, —my |

i, on the other hand, )&%z\w«are testing the same hypothesis
assuming that the sample&k’vcre drawn from populations with the
same standard deviatiop.(p, say) we should amalgamate the samples
in order to form anestimate of this paramcter o.

.'\ N,

..\':.

if the #’s are large. ™

Example 3§
The folloWi}g data have been obtained relating to schoolchildren:

£\ No., with medium

& \d Total hair colour
N Edinburgh 0,743 : 4,008
Glasgow 19,764 17,524

We proceed to test the hypothesis that the samples are drax?'n.fmm
populations in which the proportion with medium (,:oloured hair is the
same. To form an estimate of this common proportion we amalgamate
the two samples and assume the common parameter ¢ to be equal to:

4008 +I7,529 _,

AT A = 4350
9743 + 36,704
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The standard error of this valuc of ¢ is

e
~/4—3“';—0-->< 5% for Edinburgh (sample size ¢743).
9743
and 4350 % 5050
AN 39704
Hence, it our hypothesis were correct and we took sumples of 9743 and
39,704 respectively from the two populations, the cxpected value dhthe
differcnce between the proportions of children with medium oliired

for Glasgow (samplc size 39,764).

hair would be zero and the standard error would he: O
— EER
<4350 %3650 —— £ — — | = ooz,

N0 s6s 9743 30704 Q%

As the observed difference is

R AY;
4008 17,5291
— = = Q2.
9743 39,764, <

As this is more than five times the standard error we conclude that our
hypothesis is untenable, N

Before dl'm@jnwg,&%}_ﬁagﬁ@ﬁlﬂs@g?g}}pw_ever, we should nced to be
satisfied that the description “edium hair colour” is uniform between
the two cities, Owing tosthe difficulties of obtaining a satisfactory
definition it is Itkcly thr{r“ glifferent standards were adopted.

24, Loss of degx;e}s\oi‘ freedom.

It should nople/assumed that the values of parameters arc abways
estimated ffom the sample. Sometimes the hypothesis itself
specifies sifeh a value. For instance, in the middle of p. 103 we
consic}Qe’d the hypothesis that two variables were really uncorre-
latgd.'{a vety common hypothesis) and therefore assumed 2 standard

ws(if.tl}()]_‘ of 1jv'n which is obtained by putting r=o in the formula
NAuoted on p. 96.

When the values of parameters have to be estimated from the
sample the student may feel that this tends to be unduly favourable
to the hypothesis since the more the test depends on sample values
the more likely is it to indicate a good “fit” with the sample. This
point is unimportant if the number of values fitted i large but it is
of general interest and must be allowed for if only a few values are
being fitted. We say that “degrees of freedom” are lost when the
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values of parameters arc estimated from the sample. This phrase
will be discussed further in Chapter V where examples will be found
of the adjustments made in applying a certain test for this loss of
degrees of freedom. :

Example 4.
The following example illustrates how correlation may sometimes be

dealt with:
Total live Wlale live  Proportion of

births in hirths in  male births4p
1917 1937 total bigths/y
Fown 4 956 - 5oz 545)
Towns 4 and B combined 1406 697 Y490
Is there any significant difference in these results? y \

If the proportionate class frequencies are compareth directly, correla-

tion is bound to atise, since the proportion in town yinfiuences that for
'.-3} the difference is of

the combined towns, and the standard deviation’ 0
the morc general form Vol + o} —arayop If thc'ﬁ}te value of r is unknown
the problem may somectimes be solved by Jiving 7 its maximum and
minimum values +1 and — 1 respectively; a more refined method of
anproach is however discussed invthedeadebtiany org.in

The simplest method of dealing Sith this problem is to eliminate the
obvious correlation by subtragting' the data for town A from the com-
bined data. We thus obtain”f@'é town B only:

Total live bi;%lé\é'iﬁ 1937 450
Male live births in 1937 T 195
Proportionhef male births to total births -433
2K .-
o\ 4 . . "R25 X478
Standard errqn}f proportion of male births in town A= W" .
£ ) 33
. }."\\ ) B 433~ 567
N ” ” L] 450

£\ .
{m}ldhrd error of difference of these proportions
_ [esxazs 433 <367
956 450
The actual difference is -525 — 433 =092 o
As this is between threc and four times the standard error it is significant.
1£ it is desired io compare the proportion for town A with the proportion
for the combined towns, the corrclation can be allowed for as foll.ows,
bearing in mind that a given proportion for town A can be associated
with onc and only one proportion for the combined towns.

028,
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Let g4, g and ¢, 5, represent the proportions af male births for 4, B
and the combined towns respectively, and let # , and #,, denoie the total
number of live births in 4 and B respectively. Lot o4, oy and o y_g
denote the standard crrors of g, g, and g, 5, and let ¢ denote the
cocfficient of correlation between ¢, and g . ..

Then the standard crror of g, —g 1, is

NOUATOY 13— 3G 4Oy v (0}
Radatipgy L\
Now Gip= Bada T inin R,
Hythgp O
N/

Henee, if capital letters denote deviations from th(, (nt“an

ny Qo HeLOH \‘

’\0

0
mAn RtHg

since in considering standard crrors we abat}}ré samples of the same gize
to be taken, so that 7 and #, are conz,t\n‘m

1 (O8)+n,,0,,0
S Qunla=~57 A(Q ;) BRAEAL L (9)

ny+ng

3

If we su%ﬁg;,@h;@glmrgaﬁgmgrmsamples in¢luded in the sampling

distribution we have

LQA%»QHX\JUAH,GA, (from definition of r)
while from equ.itxbu (9) we have
)
5Bn0u=. T s s 3040,
OO 7, Aﬂﬁ ny+ny

Teé_second term on the right vanishes because by hypothesis the
sa.r;@lca from A4 and B are independent,

’.;

) 20,0
'“\f wand _~.££_L3'
/ T4Tg
the coefficient of corrclation between ¢ 4 and g, must be zero.
Also Q)= No?,
so that we have, finally,
T b4
A'?'U'A_l_BO'A =_d . TUE{ ,
gty
=_ M1 oy

RatHy, o4up
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1496 % 504

DBut _
T /\«'II 936

and similarly = / 4‘)6 * 504
’ ' 1406

{taking the observed valuc of g ;, 5 as the true mean value of the ¢’s for
both towns).
Hence the cxpression {8} becomes:

: Ko
[ 930 1] A\
6 - | O
,\/ 490504 lo36 6" 1406 2 1400 956J AN
™
_ 4590 7
N/ 496 %7504 56 ?}40(\

=-00Q1 approx.
G1 app - \\;

The observed difference g, —g4-5 i "525 —’-.4@{&.:-029.

As this is more than three times the standatd drror it is very probably
significant. If the caleulations had been carrwd out to a greater degree
of accuracy it would in fact be found thgt the ratio of the difference of the
¢'s to the “standard error of the differ@nice is the same whether we com-

pare ¢, with gg of g4, With (‘:‘{i“ffeh o awlgbrary.org.in
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EXAMPLES 4

1. A factory turns out an article by mass production methods, IFrom
past experience, which is sufficiently extensive to he reliahle, 1t appears
that 1o articles on the average are rejected out of cvery batch ol 100,
Tind the standard deviation of the number of rejects in a batch. What
is the approximate probability of 7 or more being rejected ? ~

It is reported that several batches have recently been tumcc} &t con-
taining 20 to 30 rejects. What inference would you draw? {0\

2, An examination is held in several different centres andithe following

data have been extracted from the results: N
AN Stundard
WA\ Mean deviation of
Number of § percentage  percontage
candidates of marks of murks
Centre 4 129V 448 a3
All other centres combined 224 453 63

Do you consider these data significint of any differcnce between the
candidates at Centre 4 and at otlier tentres and, if so, why?

3 An a:iil\l\{al_lggpcﬁ%r{lig%g{"_a{;'f_ar_%flz proportion of whhose business cul-
sists of 15- dnd 20-year tefm fidrwment assurances for sums assured of
£30and £ 100, has in tie past kept hand-written valuation cards on which
net premiums are ,inﬁe}ted to three places of decimals. These cards are
filed according t(NEse{i- of birth for whole life assurances, and according to
year of maturitifor endowment assurances, and arc arranged within each
group accqriiipg to date of cntry.

Macl-d\ie{-punched cards are now to be adopted and it is desired to save
spaceort.the card by tabulating the net premiumnis to the nearest integer.
Y. \Qre asked what the error is likely to be in the total of 2 number of net
premiums and how you would proceed to construct samples for the

\':p'ﬁrpose of testing whether any bias in the figires is likely to cause 2
+ divergence from your theoretical results.

Investigate the problem and draft a short reply in non-technical
language.

4. An office has on its hooks 4000 policies of all classes subject to
monthly premiums, the average sum assured being f300 per policy and
deviations from the average being negligible in number and amount. The
monthly premium for each policy is obtained by adding 2} per cent to the
annual premium rate per £100 sum assured (this rate heing calculated
to the nearest penny), dividing the amount so obtained by twelve, frac-

tions of a penny counting as one penny, and multiplying by the number
of {100's assured. ’
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Estimate the amount of loading in excess of 2% per cent securzd,
indicating the statistical error involved.

5. Under a group life assurance scheme the employcoes of a large
industrial combinc are on each 1st January assured against death during
the ensuing year for sums of £ 100, £200, £300, £400 or £500 according
to their salaries on the 1st January. The following schedule shows the
number of employees assured on 18t January 1937—subdivided according
to the nearest quinquennial age at that date, and, in the last column, the
rate of mortality used in calculating the premiums:

N
. oA\
| ; . Total Y\
! No. of emplovees assured for no. | Total sum [y
Age I of em- assured g, 7=
| f100 i f200 | fizo0 | fi00 | Loo ployees! p
——_— | B . ——— -—. ........... '\ —_— s —
25 2000 1006 | 300 100 — 1 3,400 53000 003
30 180 | 1100 | soo  3oo | 1oo | 3,800 (J2e000 | 004
35 | 1600 | 1100 | yoo | go0 | 200 | 4,000 s 850,000 ‘005
40 1300 | 1000 | 800 | oo 300 | 3,90Q1)7 920,000 -och
45 1600 goo . 7oo | 6oo 400 ¢ 3600 | y30,000 Ialel
30 | o0 700 | 000 . 500 | 400 { 2QOO| 790,000 | 0T2
W H
55 300 400 ‘ 400 | 400 | 5004 2,000, 640,000 | 020
- - ' warer dhiraulibrary org.i T '
Totall 800 | 6200 ° 4000 2860 _igoo 1:[ 23,656 580,000 | —

The death claims arising duriggg;y amounted to £351,000,

T'o what extent do vou consider that the difference between the mor-
tality experienced during 19\_} and that used in calculating the premiums
was significant? <~

(You may ignore aug.correction for the grouping according to nearest
quinguennial aged™

7N\

6. (a) A Joffice investigating its mortality cxperience among lives
aged & exactly observes that, among £, lives, @, deaths during the year of
age givedrate of mortality e

& g« .j - T =i Ly

\¥

Msﬁming that the true rate of mortality 7., s known, what deviation
| ¢, — g5 | would you consider significant? Give reasons,

State the test for significance of the difference between the observed
deaths 4, and those expected by the true mortality 6, [=F,x q7] and
give a convenient practical approximation that you would make if g, were
in the neighbourhood of -o1.

() The office, for the sake of convenience, would prefer to enumerate
the number of policies on lives aged x and the number of such policies
becoming claims, but it is suggested that the normal tests for significance

Faasiii g
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would be invalidated by the cxistence of lives on which two or more
policies are in force.

On what grounds is this criticism based? lustrute your soswor by
assurmning:

(1) That there are two policies in force on cach of the /7, lives,

(2) That one-half of the E, lives have onc policy cach and the ather
half two policies. For this purpose you may assume that the rate of
mortality is the same among lives having onc policy and lives Kiving
two policies. {\‘ )

7. A specified universe consists of N mcasurcments and™fs fandard
deviation is o5 . A group of # measurements is sclected a:r.:{a}l"dt}m anid its
standard deviation is obtained as o, Show that the fun heatue of (CER
when many such samples arc taken, approximates j\{{h

n—1 N( P \\'
7 N—1 T \}
"N\

N

. /\
G\'\ /
(\
O
AN
O
x:\

\Y
\o/



CHAPTER V

GRADUATION. GENERAL CONSIDERA-
TIONS AND TESTS

1. Before we proceed to the description of individual methods of
graduation there are several matters which can conveniently be
dealt with as they arise in the application of several, or even all,

methods. ;O\

£\
2. As has been said previously, any body of data exarnined by the
actuary should be regarded as a sample (even though all the avail-
able data have been included in the investigation) and\Hénce any
results deduced will be subject to errors of samplirtg ’

By speaking of parameter values of, say, ¢, orsickncss rates 2,,
we mean the ideal values which would hayé\béen obtained had
there been unlimited data available (and thé\pachinery for handling
them) and had the years considered_bgen themselves free from
any accidental peculiarities. Wﬁ"fsd&ffﬁm%ﬁydéﬁde which of the
peculiarities can properly be regarded as accidentaland on this point
opinions may differ. For instafiee, a severe influenza epidemic may
render a given year abnormakbut the effect of epidemics in general
should be allowed for, iththe universe values. Only the intensity of
the attack may be régarded as abnormal. Again, while the ycars
1914-18 were abnefrnal it does not necessarily follow that, in con-
sidering our, Ri:(}ﬁre of the universe rates of mortality, sickness,
fertility, etQ; such upheavals as occurred in those years should be
ignoreds \

3 ”'r;m;' statistical rationale of graduation.

}t may be said that the art of graduation is to arrive at an estimate
of the true or universe values from the values derived from a par-
ticular investigation. For the purpose of most of the tests discussed
in this chapter it will be assumed that the data examined are a
random sample. In actual practice other considerations arise, for,
in order to formulate estimates for the future, the actuary records
and analyscs data which must of necessity relate to the past. The

82

™\
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graduated rates may not therefore indicate what results would have
been obtained but for the limitations of sampling. The best example
of this is given by the a(m), a(f) tables, which were derived {rom
an investigation covering the years 1goo—20. ‘IT'he graduated table
finally adopted did not refleet the actual experience of those years.

There are other factors which sometimes apply, such as a desire
to crr on the side of safety cither over the whole table or orgl2
particular range; for the purposc of this chapter, however, i Wil
be assumed that the graduated serics of values represcn'{% an
estimate of true or universe values. We shall develop 5ts o be
applied on the assumption that the data used in th;3~ m\estlgcmon
represent a random sample, Le. that no bias has baen introcuced
accidentally or deliberately, ’\

4. Properties of a well-graduated series?’ e N\

In the language of the previousph %tcr we ghall set up as a
hypothcesis that the graduated rateb ate the “true” rates and that
the observed 1 rateg dif dlﬁ ;l'bfrra?lm then‘i | only owing to sampling crrors.

There is a saymg natura on aglt per salturmn™ expressing the
fundamental fact that naturaborces operate gradually and that their
effects become apparent eontinuously and not in sudden jerks. In
its application to Iﬁél’tdht} and sickness data it implies that any
rates which mayxeflect the operation of purely natural causes should
not exhibit auy, ‘iscontinuities, breaks, or sudden and unexpected
changes. Jnother words, we expect any set of true values to follow
a smoothy‘eurve, or, as we usually say, the graduated serics must
possessha high degree of smoothness.

We know the sampling distribution of functions such as q,; this

-~ 15 onlv a proportionate class frequency, and if we assume that its
distribution is reughly normal we can form some idea of the
probabilities of errors of varicus sizes arising from the operation
of random sampling.

Taking the graduated values as true values, we can calculate the
discrepancies betweenthetrue values and the samplevalues (i.e. those
revealed by the data) and examine whether theyare rcasonable or not.

We thus have two main sets of tests: (i) tests {for smoothness and
(ii) tests of fidelity to data,
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5. Tests for smoothness,

For practical purposes any table which is to be extensively used
should have a very high degree of smoothness: otherwise the more
complicated functions based on it, such as policy values, will show
alarming and even embarrassing irregularities.

It is usually found desirable therefore to examine the first three
orders of differences of the graduated values. Generally speaking
the third order of differences wilt be very small and it has beeny
suggested that, in comparing two different graduations for smogth-
ness, the sum of the third differences should be found fpr\'éhch
table, the summation including all the values. On this basis it is
usual to accept, as the better graduation, that which giyes rise to the
smaller total. On the other hand, it should be remembered that -
smoothness in the successive orders of differences¥snore important
than smallness. [t is quite easy in fact to wrif;e ‘dgwn any number of
ideally smooth scries derived from mathematieal forrmulae for which
the successive orders of differences, a}tﬁeﬁgh smooth, show little

or no tendency to diminish. o\

It should he remembered]” dereplibritienddiough natural
causes are unlikely to produgc:ﬁ‘fegularities, other factors may be
operating to do so. Irregulai'fties which they produce arc often
inherent in the data andmngattempt should then be made to eradicate
or reduce them. Fo’)\én'étance, many pension schemes provide for
retirement betweéhages 6o and 65 or before age 6o for reasons of
ill health. Th\Medrement rates for such a scheme would probably
show a stea@iﬁcrease up to age 6o but 2 sudden jump when that
age Wag\t(:}é}]ed. There might well be two peaks, one at age ’60
(the fifst'age for normal retirement) and the other at age 03, with
a grongh in between. These discontinuities, or sudden changes of
“Cutvature, are due to the operation of the rules, and unless there is

good evidence that special circumstances, unlikely to recur, have

exaggerated them no attempt should be made to reduce them 30 as

to produce a more regular curve.

6. “Errors” and “mistakes”,
As hitherto, we shall use the word “error” to indicate the dis-

crepancy between a parameter and the corresponding value derived
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from a random sample. The crror is solely due to the smaliness of
the sample. Unfortunately, other factors such as human fallitility
have to be reckoned with, and we shall usc the word “mistakes” to
refer to inaccuracies or discrepancies between universe and sample
values due to causes other than random sampling.

It may be said at once that there is no satisfactory way of dealing
with mistakes except their complete eradication before gradaiion
commences. Some of the tests described later may draw attefilfon
to mistakes and all methods of graduation do in fact redybe- their
disturbing effect. If mistakes can be traced the whole aradiiation
should be done again after they have been corrected, l}:ﬁfurtunately
this is often impracticable. \
S
7. Bias. \g

As has been previously stated, bias dp(;&\iot introduce errors in
the statistical sense and the foregoing gheory does not apply. It may
arise through some personal factor)slich as misstaternent of age,
and sometimes the statistical goi:eéées may themselves introduce
bias. www.clb1“=.U.1111:ira1‘.)'(j LN

If bias cannot be eliminafed, the method of graduation should be
chosen so as to reduce ghidveffect to a minimum. The method used
for the English Lif‘e{fIﬁbles in Chapter X is an excellent example.

If bias is at gll¥extensive the ordinary tests fail, except that the
examination of the deviations and accurnulated deviation is still
very valuable{see para. 11).

AN

Y .. . .
8. Spegial objects of the investigation.

Iﬁ deciding upon a method of graduation, and in testing the

. (Tesults, the object of the investigation should be borne in mind. For
S\ instance, if a mortality table is required for use in ordinary life
assurance it is important that the mortality should not be under-
estimated, while if it is to be used for calculating annuity purchase
money the converse holds. For valuation purposes the gradient
should not be underestimated over the important range of ages 40

to 70, since net premium reserves generally vary with the gradient

of the mortality curve rather than with the lightness or heaviness
of the rates.
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9, Choice of the function to be operated upon.

'I'he rough data derived from the investigation are usually avail-
abie in the form of the exposed to risk at each age or group of ages
and the corresponding decrements (deaths, retirements, marriages,
¢re.).

We may either

{i) attempt to graduate the exposed to risk and the decrements

separately, finally deriving the rates of decrement by division; ¢
or {ii) obtain ungraduated rates of decrement direct from the rough
data and then graduate them. R\,

The first method has certain advantages in special pmbl\ems,
notsbly those connceted with the English Life Tables. Abvye all it
enalles the operator to keep in view the weight of E}Qd’am at each
agc while he is performing the graduation. $

If the second method is used, one rate of decrendent is very much
like another, irrespective of the volume of fie*data on which it is
based; and although in testing the gradliation the weight of the
observations is allowed for this is not’do‘ne’ during the actual process
of graduation. \arW\a!;dprfaulibl'ar‘y.ot' g.in
On the other hand the followifig considerations should be borne

in mind:

o

(¢) in many experienéé}the exposed to risk is essentially a dis-
continuous funﬁ\on; and

{h) a slight ins\’tcirt'ion of the exposed to risk may CDi%lCidt‘: Wit%l a
slight r,kiatortion of the decrement in the opposite direction
andthétombined effect may be quite appreciable. Morcover,
if“the rate of decrement is increasing slowly, a slight dis-

Jtortion of the decrements may produce a graduated rate

O decreasing with an increase in age over a range where such a

A feature is unlikely to represent the facts.

As regards (b) it is not uncommon to graduate the exposed to
risk and then to adjust the decrements so a8 to produce the same
crude rates as before. The adjusted values are then graduated and
serious distortion of the resulting rates is unlikely. The extra work

involved is usually well worth while. .
On the whole the method (ii) above, viz. the calculation of crude
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rates of decrement which are then graduated is almost invariably
adopted. By this means the work is reduced to about onc-half of
that involved in method (i). Moreover, a quotient such as a rate of
decrement is much more likely to progress smoothly from age 10
age and to follow approximately a mathematical curve than a
function such as the exposed to risk.

In considering mortality tables the rate of mortality ¢, is vaually
chosen for graduation, but the form of the curve with its gofitle
gradient at the younger ages and its very rapidly inercasing grgdient

at higher ages makes it unsuitable for some purposes. & ™

\

For this reason log ¢, and log (g, + 1) have sometimcs Deen used,
since these functions tend to be much flatter and @afn therefore be
represented more easily in the graphic form, "

Again, the reader will be familiar with tableguivavhich i, 15 of the
form A4+ Be®. Because of the practical agyartages of such a table
many attempts have been made to find §dtisfactory graduations of
pe Of colog p. (a closely allied funcyduy using Makeham’s Law or

some modification of it, such as A.’;— Bx + Dez,
www . dbratli Tary oRgIn

NS
™
3

10. Comparison of gra,c{uatibn methods,

In graduation, mo;e”than in any other branch of actuarial scicnce,
it may be said that®Cthe proof of the pudding is in the cating”. No
method, howeyériunorthodox or crude it may appear, should be
condemned jigits application to a particular sct of data provided
that the }‘\égults produced are satisfactory. It may be felt that the
methddis'unlikely to be equally successful if used for other tables;

thzgt};?e., owever, no criticism of its adoption for the particular table
eohsidered.

\M} It will be seen later that each of the well-known methods has
peculiarities which make it likely to be valuable in special circum-
stances. For example, the graphic method is especially useful if
the data are scanty, The experimenter should not, however, be
deterred from trying any process which appears likely to suit the
particular problem in hand. The important point to remember is
that the graduated table should satisfy the two essentials of smooth-
ness and adherence to data, .



DEVIATION AND ACCUMULATED DEVIATION 121

1i. Deviation and accumulated deviation.

In discussing tests for adherence to data it will be assumed for
clearness that we are dealing with rates of mortality. Most of the
results, however, apply to any tables of rates which can be re-
garded as proportionate frequencics (e.g. rates of withdrawal or
marriage); they do not apply to sickness rates, which allow for
duration of incapacity and are not therefore related to frequencies
of occurrence. _ Ke

In order to allow for the weight of the data at each age it is L}suaf'
to comipare actual frequencies and not proportionate frequéncies.
'Thus the ungraduated rate of morality ¢,’ is not usuall’yjctompared
with the graduated rate ¢, : both are weighted by thegxposed to risk
E, and the actual deaths 6, are then compared with thevalue of £, ...
E,q,isdefinedas‘“theexpected deaths atage ™y :I@t’erms of statistics
the E, exposed in the sample are imaginedias divided into two
classes, those dying before age x+ 1 and those surviving to that age.
'I'he observed class frequency in the “diaths” category is &, while
the true value which would have: é’g‘ﬁ{é’g‘ﬂ*‘ﬁ%’%ﬁ‘verse rate of
mortality had applied is E,g,. ~3° ‘

'"The expression “actual dedths minus expected deaths ” is usually
referred to as the “ devi;lti@’if} and will often be denoted by 6, E,q.
or, more briefly, by 4 =B, )

Table VI on ppyala, 123 is typical of a graduation pased on
scanty data and §ht%ws how most of the functions needfad‘m testing
it are calcqls{t’e}if The functions “accumulated deviation” and
“appl‘oxixz;\kaie 'standard error’’ will be discussed later.

"The de;lumns for Ag, and A%, are inspected for smooth.nes‘s, but
on.tKi3 oceasion A3g, has not been found, since only three significant
fimutes of g, are available and A%, is clearly smooth.‘ . .

In column (8) the deviution is shown on the !eft if it 1s negative
and on the right if it is positive. Allowing for sign the total of the
column is -3, which checks the numerical work, since the total
actual deaths are 373 (column (3)) while the total expected deaths
are 3727 (column (7)). The sum of the actual deaths sI_lould always
be nearly equal to the sum of the expected deaths, ie. the total

deviation allowing for sign should be approximately zero.
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If the curve representing the graduated values closely followed
the curve representing the observed values we should expect the
two curves to cross and re-cross at frequent intervals., In other
words we should expect the deviation to change sign frequently.
In the table above, the deviation changes sign ten times in twenty-
one values, and this must be considered very satisfactory.

The mere crossing and re-crossing of the curves is not enpugh,
however, since large positive deviations at one point may be
followed by only small negative deviations. To investt gatethis point
the column headed “accumulated deviation™ is forn€d by adding
the previous column from the top downwards, i.e.(t}ie; second entry
is the sum of the first two in column (8), the thifd)is the sum of the
first three in column (8), and finally the last 3§ Hie sum of the whole
of column (8): this again checks the nuerrical work,

Clearly any item in column (9) repre§énts the difference between
the total actual deaths up to that\age and the total corresponding
expected deaths. The figures, thére’fore, should never be large and
the same ap I\Lefﬁé%l}hfi%l‘cg;g‘lj; &hllrlle the sign should change fairly
frequently, Inthe table shown the total of column (g), allowing for
sign, is 6-5 and there aré'nine changes of sign; this indicates satis-
factory agreement with the data.

Most of the tQ:Sts’ of a graduation relate to the size of the
deviations, Bef_&e we leave the question of changes of sign,
however, Flge’. foliowing section may be of interest,

12 Qk(ghées of sign in the deviation and accumulated deviation.

& ¢ graduated rates are regarded as parameters of the universe

\.ff;:bm which the given data were obtained by random sampling, any
. given deviation is equally likely to be positive or negative although

strictly this assumes that the graduated value is 2 median rather
than a mean.

If the signs are random the number of changes of sign in the
column of deviations should be roughly equal to the number of
non-changes; the same applies to the signs in the column of
accumnulated deviations,

This forms the basis of a test suggested by H. W. Haycocks
in the discussion which followed the reading of H. L., Seal’s paper,
“Tests of a Mortality Table Graduation”.
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In that paper two more refined tests for changes of sign in the
deviations were discussed. The first of these was devised by Make-
ham (f.I.4. Vol. xxvir), and although the test is rather inelastic,
the paper in which it appeared forms a useful introduction to a
morc modern paper by W. L. Stevens, * Distribution of groups in
a scquence of alternatives”, Amn. Eugen., Lond., Vol. Ix, p. 10,
Scal showed how Stevens’s technigue could be applied to changes
of sign in a series of deviations, but Stevens’s original paper must
be studied by anyenc who wishes to make use of the method. .\:\

NS ©

N

13. Standard etror of a deviation, ~\

We know that if a particular class had a proportionate:f}eq{lency'
7 in the universe the class frequency in random saurples of 2 will
have a binomial frequency distribution with meang and standard
crror A'pg. If ¢ is the rate of mortality ¢, and/the number in the
sample is E, this means that the expcctgd:}eaths would form a
binomial frequency distribution with mga‘n F,q,, and standard error

VE . where g, is the trus rats QimOrglisy, which we may take

as the graduated rate. In practical:iyefk P 15 usizally se near to unity
that the standard error is tal'{f_an’zié vE, g, =~expected deaths. This
function is tabulated in t@%}last column of Table VI and gives a
means of testing the sizéof the deviations. .
Since the expectedydeaths E,q, are the mean of the sampling
distribution the déiation is mercly a sampling error, and if we
apply the resulfs'derived from the normeal curve we can say that the
deviation sHould not exceed twice the standard error, or at any rate,
three tiches the standard error. Accordingly, we compare each
deviaii%ﬁ with the value in the last column, regardless of sign, and
Tinitte roughly the probability of its arising through sampling
errors. In Table VI only four deviations exceed the standard error—
an excellent result which is probably fortuitous. o .
Although we have so far compared each individu.al deviation \:'Jlth
its approximate standard error more information is oftf:n obtained
by considering several values together. For instance, if we find 2
succession of, say, three positive deviations, we can compare their
sum with the Sl.l.r;’l of the standard errors; the same applics still more
forcibly if we find a succession of four or five deviations of like sign.



126 GRADUATION

Thus the last three deviations in Table VI total 5-0, while the corre-
sponding standard errors total approximately zz-1, about four
times as much. _

Similarly, we may group the data in order to obtain a group rate
of mortality ¢,

1 Total deaths for group X4,
where ¢'= T =S

otal “exposed” for group ’
—_— - ’\
and compare the group deviation with +/(ZE,) ¢'p" or, moresiinply,
with V(LE,)¢". This test is not strictly accurate, since, t\flé”aata at
each age form separate samples with different s&mphﬁg distribu-
tions, although as a practical device it has 1ts usega®

It should be emphasized that, although daxmhons in excess of
two or three times the standard error indidgt¢ distortion of the
data, in graduation the converse does ngtthsld. Deviations can be,
and often are, only a smalt fraction ofithe standard error in good
graduations, and should not then be'segarded as evidence of under-
graduation. Data are said to belundergraduated if the graduated
curve has adBEredPRRy Y aﬁfﬂ‘;h T8 the ungraduated values.

"l
"y ¢

14. Application of the probable error.

Tiwill be reme}n\hercd that in the normal curve the probable error
is approxmately two-thirds of the standard deviation. Ilence, if a
sampling digtribution is approximately normal, we may take the
probablég rtor as roughly £ (standard error) and from the definition
of ‘rqbabk: error we should expect roughly half the obscrved
deviations to fall short of this value and the rest to exceed it. Thus

(“atage 61 in Table VI we may take the probable crror as about 3°0,

and if we took a great many samples cach of 917 lives we should
expect the deviation (irrespective of sign) to exceed 3 in about half
of the samples.

Actually, although we have only one sample at each age, the argu-
ment leads us to expeetabout half the deviations to fall short of the
respective probable orrors. It must be borne in mind that the
deviations are not part of one sampling distribution ; each is a single
representative of its own sampling distribution. In Table VI,
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fiftcen deviations are less than 2 vexpected deaths, while only six
exceed that value, 'This means that, on the whole, the deviations are
less than we should expect and suggests that the data may be
undergraduated. This test alone would not cause the graduation
to be condemned.

15. Application of the mean deviation.

Although comparison of deviations with the probable errors as
abuve may draw attention to the possibility of undergraduation,{a
more satisfactory test is needed. For this, the mean deviatigr{ﬁmaj
be used. In a normal distribution the mean deviation igsguighly
four-fifths of the standard deviation. Hence, if we ma.ké’ the usual
assumption that in suitable conditions a binomial ~El‘i%tributi0n is
approximately normal we can take the mean, diwviation (4-E)
in a great many samples of E, lives aged » a8/~

8NE,p,q, or, approximately, -8 VE.

In other words the deviation regardless of sign should on the
average be ‘84/E, We have &T&Yp%%‘%ﬁ%ﬂﬁ%"gfo TR&8 aged » and
cannot cxpect the observed ‘ft,’géviation to approximate to the
average value. If, however,(we sum the deviations regardless of
sign for all the availabkcf'}ges the total should approximate to
RINVE , because, alth&}fl some deviations will be greater than
their mean value~~:§£1& some less, these differences will tend to
cancel out whetla great many values are amalgamated. o

In Tabquﬁ‘Ehe total of the deviations regardless of sign is
16441 G&v 33-1. Four-fifths of the total of the last column is 62-5,
50 that ﬁ}e total deviations are about half the expected value, thus
tc,ndljig to confirm our previous impression that the data have been
&Q&ergraduated.

It should be emphasiz
and that in any event it is unlikely
carded merely because it seemed to adhe
provided the smoothness were satisfactory. In nearly all such
instances it will be found that the differences of the graduated rates
progress irregularly and for this reason an attempt would be made

to {ind a better graduation.

ed however that no one test is conclusive
that a graduation would be dis-
re too closely to the data,
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16. Limitations of the foregoing tests,

The tests for adherence to data, so far discussed, may be sum-
marized as follows:

(1) The smaliness of the individual values and of the totals in the
columns showing the deviations and the accumulated devia-
tions.

{2) The number of changes of sign ot the deviations and fhe
accumulated deviations. O\

(3) Comparison of cach deviation with the standard &gor both
age by age and by suitable age-groups. R N

(4) Comparison of cach deviation with its app ré\um ate probable
Crror.

(5) Comparison of the total of the deviatighs, irrespective of sign,
with four-fifths of the total of the &'fndard errors.

Although for most practical purp usea these tests are sufficient they

are subject to the following limitations:
www dbraulibrary ongiin

(1) The smallness of the deyTations and accumulated deviations

is necessary for a guod graduation; each of them may, how-

ever, be very sma&mdeed without giving any indication that

the adheren f\o data is too good. The test can give evidence

of distortign of the rough data but it gives no evidence of
undcrgr{dﬁﬁtion

(2) It 1b'tlrfhcult to say how many changes of sign are to be

dpected or how many are to be regarded as satisfactory.

T‘hc problem often arises of how far the number of changes

% can differ from the number of non- -changes before we may
V" regard the graduation as suspect,

(3} T'he deviations should bear reasonable ratios to the standard
errors, although here again we have no cvidence of under-
graduation however small the ratios may be.

{4) In theory this test reveals undergraduation as well as over-
graduation (i.e. distortion}, but it is rather insensitive.

(5) Evidence of undergraduation is obtained rather more reliably
than by (4), but the mere addition of deviations irrespective
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of sign is not really satisfactory. What is required is some
rmeans of finding a combined probability that the observed
deviations would arise from random sampling.

Two such tests are discussed in Seal’s paper and one of them,
known us the y? test, is of very general application outside actuarial
work. The theoretical work involved in the x® test is rather difficult
and bevond the scope of this book, but it is hoped that the
following introductory notes will enable the student to read one of
the standard textbooks on the subject more profitably after obtain{
ing @ preliminary grasp of the fundamental principles involved.) ’
17. The y? test. ~ )

T combine deviations by straightforward addition\Is clearly
unsatisfactory since positive and negative items willxend to cancel
out. Test (5) discussed above avolds this difﬁculty@:’ignoring signs.
Another obvious way is to square the deviations before adding. The
student will by now be familiar with the “dea of measuring dis-
crepancies such as deviations in termsf their standard errors, as
was done for instance in consideting dégressiomlines:gliwvould seem
logical therefore to divide each’ gle(riation by its standard error
before squaring and adding, shus arriving at a fanction

Q- E0)
or more generally N\ Eopute

(\aetual value — expected vzﬂuc)2

E L} " standard error
This functigh s known as x*

Clearly{y® will be small if the graduation adhcres closely to the
data .a‘(i;{;largc if the deviations are large. By means of prepared
tabledt is possible to find the probability that the ¥ actually .found,
or 6ne even greater, is likely to arise from simple sampling. If
this probabiliixf is small, i.c. if a value of x* as great as or greater
than the one observed is unlikely to occur, the graduation has
departed too far {rom the data. If the probability s large we know
that a greater value of x* was very likely to occur, s that the small
value actually obtained was probably due to causes other than
sampling errors. The graduation has then adhered too closely to
the rough data,

FMaxiil
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The prepared tables are very extensive, since one is required for
each degree of freedom. The exact meaning of this terin is xplained
In statistical textbooks, but the following remarks, though not
strictly accurate in detail, may help the reader to grasp the under-
lying ideas. Suppose that we have any body of data split into
cells. Yor instance, the A 1924-29 data could be split into eight
ceils according to the following classifications: (i) with or without
profits, (i) medical or non-medical, (111) whole-life or endovwehent
assurance, or again the combined data could be rcgnr'dec’i:ﬁ‘s split
into cells, one for each age, or one for each quinquenriigl group of
ages. 'The number in cach cell is known as the celi“fequency and
x? is defined as D

3 {actual cell frequency — expected ccllufﬁ\equency}ﬁ
~ (standard error of cell Eeq@ﬁcy)f_ o
the summation extending over all the C&QIa\

The cell frequencies are rarcly jndependent of each other: in
particular the method of graduation”involved often cnsures for a
mortality %‘Rﬁﬁ%@%&%;g}g}ldﬁmﬁcr of actual deaths and the total
number of expected deaths skiall be equal. Any relationshi p between
cell frequencies is known asa constraint or, if the relationzhip is of
the first degree, as a, Iz‘{%éar constramt,

If there are # ¢ lls'and & linear constraints the function f=n—k
is called the number of degrees of freedom.

Suppose that; e took a great many samples of the same size with
the same yalues of 7 and k, and that we calculated x® for each, The
resulting\values could be grouped into a frequency distribution,
namely'the sampling distribution of ¥2. It should be noted that in
applying the x* test the whole of the data are regarded as one
Ssample, whereas previously we have regarded the data at each age
‘as a samiple,

It can be shown that the sampling distribution of x? follows
the curve

?

y:ynx‘lf—lg—ix, .....-{I)
where f is the number of degrees of freedom,
The range of x is o 1o w0, 80 that the total area is

i
yﬂJ xi‘f—le—ﬁ'ﬁ;‘ dx.
0
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Substituting Ja =1, this becomes

yo227 f e =2 D (1),

(M athematies for Actuarial Students, Part 1, p. 148.)
To make the total area unity we put

I
$0= TR
and write the equation to the curve of x*:

xR lpke, U

I
ITHTG

where & represents y*. 4

o,
0 Qurve of X2

The above figure shbq%'ifoughly the form of the frequency curve
if f>2. It rises to@ymaximum where x (i.e. x?)=f—2 and falls
away more grad;}é}l? to the right as x increases. 1fis larfge_thc curve
is roughly 'syihﬁietrical and it can be shown that « 2:}(3 fgllows
approximﬂ\\bé‘lir a normal curve with mean +/2f — 1 and unit standard
deviatici’ﬁ. Consequently for large values of f the tables prepared
for, 311\6 Yormal curve can be used if a new variable &” is taken, so that

\ ; \-'{2?-——'\;;::‘(.
The values given in standard tables for degrees of freedom 4o and
over have usually been obtained from the tables for the normal curve

by means of this approximate method. ‘ -

If OL=x, the shaded area to the right of the ordinate LL is
equal t T m
e —I—J gt le—i dy =P, say. ceenn(2)
BTG

g-z
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This expression for P, although somewhat involved, cun be
evaluated and extensive sets of tables have been prepared. 'L'j:ov are
more complicated than those based on the normal curye, since cach
value of f has to be treated separately.

There are two main sets of tables:

(1} Tables giving the value of P for certain values of s In
Tables for Statisticians and Biometricians, Part [, theso wbles
are given for each value of f from 2 to 29 and for hi gher j'alucs
of f at somewhat greater intervals. )

{2) Tables giving the values of x, for certain useful,y&l\ms of P,
'Fable IT in the Appendix is typical. It is reproquced from
H. L. Seal’s paper, “ Tests of a Mortality Tsi\)h: Graduation™,
by kind permission of the author, \¥%

Since the total area is unity, Pis clearly théprobability thata value
of x (i.e. a value of ¥?) obtained from a randbm sample will be greater
than x,. Having calculated x" for a samiple, we can use tables in the
first form tow?\%?' I.%%%Qgg%#gilg}glfhat a random sample would
give rise to a value of X" as greatas or greater than the one chiained.

Tables in the second ﬁeﬁﬁﬁ' start with probability levels (sce

p- 101) and enable the values of x* corresponding to them to be
obtained. N

Thus from Tal6.1
with 40 degrecsh
probability de
the data se\as

Tin the Appendix we find that for a sumple
of freedom the value of y2 corresponding to the
&l o1 is 62-88. Ifin testing a graduation we grouped
to give 40 degrees of freedom and obtained a value of
x* of,5a§y b5 we should infer that the data had been dist

orted because
- the ¢hdnce of so high a value as 65 arising from sampling errors is

leds'than -o1. If on the other hand x2 lay between, say, 28 and 5o
~\we should be satisfied with the graduation as regards fidelity to data
since the probability P would be more reasonable, i.c. nearer .

18. Alternative hypotheses as to the graduated rates.

In applying the 32 test it is §
hypothesis being tested by the
observations, and a hypothesis
by which it is being tested,

mportant to distinguish between a
data of a sample but based on other
based to some extent on the sample
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For instance, we might collect data showing the degrees of im-
punization against colds produced by a certain treatment for men
of different age-groups in England. If the resulting figures, after
any necessary graduation, were applied to a sample of Scotsmen we
could compare the actual and expected results and calculate x.
Ti the figures were applied instead to the data on which they were
bzsed we should naturally expect a better fit and a smaller value
of ¥2. Tt is for this rcason that, in such cascs, a deduction is made
from the number of cells in finding the degrecs of freedom.

A similar point arises in testing a mortality table graduagion.
We might assume that the graduated rates were the univerSe rates
and would remain the same if we tested thousands of samples of
the same size as the given data. We can imagine a v,alé:w of x* to be
found from each sample and the results tabulateds\

A second hypothesis would be that a separat®eurve was fitted to
exch of the imaginary samples before the actialand expected results
were compared and the values of x? calgﬁ}a}ed. On this assumption
a much better agreement would be Sbtained and the values of x*
should be much smaller, coYPéE?'éﬁlﬁﬁ]gb@@whath'ﬁ should expect
with fewer degrees of freedomiN "

In actual practicé we hayeonly one sample and one set of gradu-
ated rates. Which hypotliesis are we 0 adopt? Arewe toassume that
the cxpected deat {ére? fixed unalterable values to be compared
with the actual deaths in a great many samples of similar con-
stitution, or arg’ we to regard them as applying only to the data on
which theyyaseé based ?

The ffefice in the past has been to adopt the first hypothesis,
but .1{%%2:1‘11 statisticians, led by Prof. R. A. Fisher, favour the
%egbﬁd and make an appropriate deduction in finding the number

<‘§)f degrees of freedom.
The point will be referred to later.

9. Example 1.

The data of Table V{ may be sct out as oh P- 114, after grouping
where necessary to ensure an expected class frequency of about 10 as
the minimurn. )

The method of graduation did not impose any constraints, although
the approximate equalising of the totals of actual and expected deaths
suggests that one degree of freedom should be deducted so that the
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N T T [ (Actual | (Seandard !
Age Exposed - Assumegd‘ E:‘cpected |! A&t:ll { rgggl‘j’;l ! {3 :;IINUCJF 3 v | (E-l l
to risk L ds X110t frequency | quency | expected)? ! Eopoq, | el :
@ @@ @ B ® O (8)
_ — e e = .E___n_ P —_ —_—_—— - . - i—, _
| 47750 814 146 11°g : 14 441 117 18
51-53 925 152 ¢ a4x 13 r2r | 33 R
5d~55 ¢+ 820 159 | 3o 12 L roeo g 1z8 08
657 | mosz 0 xbg 1oap8 | o1y | 04 p o7 o 04
58 628 | 180 113 |oax 09 11 01
50 7o1 1go ! o133 . I4 49 13 (O o4
6o 1 813 202 | 164§ 18 256 1 16aNY 16
vo6r | gr7 217 | 1gg | 18 | 361 i 195 ‘18
L 62 ro40 | 235 ¢ 244 | 24 | 16 | {359 ‘o1 |
P63 1182 | 256 . 303 | 3o 09 1295 00 |
P04 1,209 . 281 0 365 | 43, 42283 335 . 199
i H L4321 396 1| 42 1 40 D IQe | 4270 "2
P66 596 | 340 | 543 | 54 1evoy )osad o 00
L b7 L7520 374 | 655 ) bgu.pNT 223 0 631 1 03
\_H-\_n—-__u__'__ﬂ_ﬂ_— it | - " ~_!' ——— e
}. Total 14,971 : — 1 3728 373' : — — lii =245
number of degrees of freedom is t‘i}esa.me as the number of cells, L.e, 14,
Reference to tabley -§E€ﬂﬁl‘cﬂﬁf?§r@l§f6%abilit}f of ohtaining a value of
x* greater than 2-45 is ‘g9Hence the low value obtained for x* s less
than we should expect frgmsampling errars, thus confirming our previous
conclusion that the ta@e Awas undergraduated.
Example 2. O\
The following'example is taken from Seal’s paperin J.1.4. Vol. LXX1
supra and is.based on data for ages 463 and 51} included in the A 192429
mortalitydrivestigation.
& o Age 46}
O e ot poliey l E 6 ’} 2y ‘ N ﬁq_ (-’
A P S NN | o Ler |
1 Whole life | t | | | |
W‘it‘ﬂ pl’OﬁtS “ 32,768} I 221 f 189.01 . 31°99 : 544_6
Without profits i 90,3073 49 | 5369 | — 46y 412
i Endowment assurance ! i _
With profits | 175736 | 997 ¢ 101368 ‘ —16:68 | 276 |
Without profits 30,964} | 168 | 178:61 | — 1061 ! 634 |
. - T T — ———
Total | 2437708 | 1435 | sazao9 | — | 678
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[ Age 514 ‘
Class of pelicy ' : : PRIRYS
E | ¢ i E 6-5; |EE0°
Whole life : ' ! _|
With profits arq44t | g04 | 34786 | s614| guzy|
Without profits 9,8142 | 87 . 8238 462 | 261
Endowment assurance A
With profits 137,610k | 1124 | 115503 | —31'03 841N
Without profits 27,6075 | 202 ‘ 23173 [ —2973 | 3;&141‘
_ | . e S Y
i_'?otal 216,476% ' 1817 ‘ 181700 [| — ' i 14086 [

 {

Working on the hypothests that the differences in the moi‘talit},-' in the
varicus classes may be due merely to sampling errors, tH’q,\rates of mor-
tality are first caleulated as follows:

Total deaths 1435 D
= = — =%0057682,
9454 = Total exposed 248,7’;6;-5:\:‘? F70%2
— 18 I_ -—-.008 R ot
Iz = 216,763 39355% .

o ww‘.-g:d}'jraulibrarf\il rg,lil
The expected frequencies in cachicell (Eq) are then talculated and x?

is found in the usual way, the results being 6-768 and 14-086 respectively,
Owing to the way ¢ was found the total expected deaths equal the total
actual deaths, so that a lingar.constraint is introduced and the number of
degrees of freedom is go}%?aur (the number of cells) but three, Entering
the table for three dégtees of freedom we find that the probability of
obtaining a valueof%? as great as 6-768 or greater is about -0, while for
x® = 14:086 the/prpbability is about -003.

For age 403 the probability -o3 is small but not really significant.
The valug'ef -003 for age 513 is, however, so small that the value of x*
obtaingdicinnot be explained as being due to sampling errors. It seems
theréfare that the four classes of policy differ to a significant extent. Why
ﬁgs‘résult was not shown at age 46} is difficult to explain. This question
is discussed in the original paper, to which reference should be made,

20. For convenience we have considered rates of mortality only.
The tests described apply to other functions of the same type, ¢.g.
proportionate frequencies or probabilities, and can easily be adapted
for any functions which can be expressed approximately in prob-

ability form,
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In considering other functions, such as sickness rates, we can
proceed in the normal way as far as obtaining the deviations and
accumulated deviations and examining the results for changes of |
sign, Statistical tests for measuring the size of the deviations arc,
however, beyond the scope of this book.

21, Limitation of statistical tests for adherence to data.

The tests described for estimating the goodness or otherwisg of
the graduation of a proportionate frequency should not be, apylicd
too automatically nor should the results be interpreted 99 rigidly.

The use of 20 or 3o as a significance test is based o the assamp-
tion that the sampling distribution is normal. 'Lii®docs not rest
upon rigid theory when applied to a proportiori"a’t} class frequency
for which the deviations usually follow a skey¥ curve representing
the binomial expansion (p+¢}*. The e11:0r\1m olved should not be
great if ng is large. O

The use of ‘8¢ as a measure of thé mean deviation is open to
the same objection. Moreovery although with this approxirzate
measure we “CAH- d@dﬁ’rﬂ%a‘ﬂ‘:é’r &dthl deviations irrespective of
sign, we have no satisfactory criterion by which to interpret the
diffcrence. For instanéey if the total irrespective of sign is 340,

while 83 v/npg 18 \46{23 we cannot readily decide whether the
difference of 7.8\is too great to be considered as attributable te
sampling egrots. Although an Italian actuary discovered the
sampling, vshstrlbutlon of the mean deviation in 1937 it is too
com ca}ed to be considered here.
.(\
22 Companson of two or more graduations,
\ A method sometimes used for comparing the results of two or
more graduations is to calculate for each graduation the sum of the
squares of the deviations, 2 small sum indicating good adhercnce
to data.
This test is not very satisfactory, A comparison of the values of
¥, which takes into account the standard error at each : age, is to be

preferred, and this method will probably be used mare extensivcly
in future,
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Tt should be remembered, however, that the graduation with the
smali=at ¥ Is not necessarily the best from a practical point of view.
A simple graduation, easy to apply and having practical advantages
(c.r. a Makeham graduation if joint-life functions are required},
will usually be the best provided the value of x* produced is satis-
factory and the smoothness adequate,

N\
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EXAMPLES ;3

1. The rates of mortality obscrved among a body of lives huve been
graduated in three ways. The following table shows in quinary age-groups
the actoal numbers of deaths experienced and the expected numbers
according to each graduation:

Expected deaths by Q)
Age-group .355:1}11 Gradunn — - e .
! Graduation A | Graduation B ! (T[’Edllgt\](lrk
20-24 15 10 12 ) 1:1\4
25-29 @ 28 21 22 e
30-34 39 41 42 (A 740
35739 54 1 64 1 62 .“.,\\‘ 58
4044 84 85 S\ | 81
4549 93 107 P -
50-34 97 90 L V%3 93
55-59 8o 75 WO 7 ; 78
6o-64 55 52 N7 ] s
Total | 545 | 544 549 | 543
~ | ¥

www.dbra ulibrar:':)’?‘.bl‘g.in
Examine the graduations with Yegard to their fidelity to the experience
{(ignoring smoothness) and€omment on their relative merits.
e
2. Apply the y*.tcSibo the above dara, assuming that the agreement
betwecn the actualidéaths and those expected according to Graduation A
is not fortuitons ¥t that otherwisc no constraints have been imposed.

O
3- Asmal¥Life Office has examined its mortality experience over a
recent\p}si‘hd of time. The total actual deaths numbcr 471, whilst the
totakexpected according to the A 1924-2g L'able was 430.
. (lit'respect of the Without Profit business the actual deaths were 31
\aptl the expected deaths 5o. '
It is accordingly suggested that the Without Profit busincss must
attract a much better class of life than the With Profit business.
Criticize this suggestion and state carefully the assumptions undet-
lying any tests which you might consider jt ne'cessary to make.

4. What is the justification for graduation of mortality statistics?

Apply the usual tests to the graduated rates of mortality given in the
following table, which represents a section of a mortality experience.
What special features do the graduated rates show? )
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Age & T—Txr[l:\:afcrr.limto ‘ Deaths 8, 15;;59?3?; Glrgsdggied

50 2000 ! 10 500 616

51 2000 14 00 6358

32 1400 : 6 316 704

3 deo 117 944 753

54 1700 | 9 524 8o3

53 1400 7 5oo 861

56 1300 ‘ 5 383 921

57 1300 | 1z 923 08 40N
i 5% 1300 : 18 1385 1055 7

59 1250 24 1920 II;S“ ™

6o 1050 ! 8 762 2241 3

61 950 | 1§ 1579 b NI37T

62 930 13 1203 V1534

63 050 20 210§ 1736

64 §oo 15 166777> 1980

65 850 18 2078 2267

66 800 27 (3375 2597

6 8oo 26 ’.:',; 3250 2965

68 750 3¢ oh o 4533 3361

69 ~go ZXW"‘?dbl aulidgeary org.in3774

sl : =00 5000 4196

oo 700 x~.\>5 BgTI ‘5}62;

72 650 L4 37 5602 °

SO D 3846 5538

74 I 600:'..: ’ 41 68’33 6058

75 . @y 29 5273 _ b628

5. Crltlcme\ihz following graduation from the point of view of fidelity

to the data: \

N
¢ \ﬁ.\ge croup

4044
4549
30-534
5530
60-64
63-69
7974
7579
8084
85-89
90-04

15,5r8
19,428
21,594
21,800
19,174
15,775
11,414
6,993
3,276
1,096
201

65 ;3 9
144 1346
z1Q 2239
378 3463
465 | 4681
557 6002
683 675°5
644 6374
471 4587
217 240'6

67 614

Q)
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6. Criticize the following section of a graduation from the point of
view of smoothness and test the adherence to the dats:

S . I epeet Corrmdlis
T R ol R
71 82g2 401 4237 ‘ 0511
72 81:6 432 4010 , ‘eshy ‘
73 7905 518 4973 | obag
74 7588 532 528-8 ohgi ™ |
75 7214 592 5561 o771
76 6713 567 se6r | Qo3 |
797 tizog 548 5715 N ragzt
78 5704 5053 5683 (W onob |
79 51g6H 562 ‘ 563-;{:.. ' Tads
8o 4664 549 L sadd | 16
81 4142 558 5322 ' 1285
82 3576 479 ANAYTS | 1591
83 3070 Br b0 . 1521 ‘
84 2575 399 5N) #2504 D32
85 21406 gagq | 3884 | 1810 !
86 1706 348 3328 rozr

Y
NS

www.dbl‘aulibrarylférg,in .

7. 'The following tableshows the results of ano
the data shown in Fxample 6.

any functions whichenable

ther attempt to graduate
Calculate, for both scts of graduated values,
(@) the smoothness and (b} the adherence to

data of the two grﬁ%ations to be compared.
S Tl Ry
gty | s | e | pept ) "R
_._s_“\T\._______.________ L !._.. —
AN oo 4146 79 | a8 561°2
o\ 72 056 ‘ 4567 8o ‘ 18 | 5503
AN 73 003 1 4980 81 ‘120 5343
& 74 ‘070 5311 82 140 ‘ 5000
75 OFT O 5553 83 152 0 4660
=6 084 | 5639 8. . 166 ‘ 4275
77 09T fgn 85 | 183 3927
78__ oGy | 504 24 ) 200 | 3402
S A "
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8. The following table shows part of the Manchester Unity sickness

experience 1303-07 for Occupation Groups A, H, J.

| < . | Crad J - Gradﬁéned
' "f . 1 ey t . - k f
Mo of years sicﬁn:ss prlndpoLﬁign Nci; '?kaEEkS :iiirfe:s
Age i of iife exposed claims, of members T Ste %Esst per member
1o n};k of First o sick, First | g 870 0 per annum.
ic ; ; . t
e | et | s R s
i | sickness
W SIS @ )
30 70,003 15,031 213 45,742 6490
31 60,380'5 1 14,866 213 46,183 656~
32 67,6395 1 14,307 214 45034 063
33 40,3975 14,212 214 44,661 \\ 70 |
34 94,043°5 13,629 213 #2348 677 |
35 61,692°5 13,108 | 213 42,432 685
36 50473 12,701 214 | 4md3b 696
37 1 37,3803 12,406 215 | \.40 518 I 709
38 34,7415 1,777 A7 PRV304L 726
39 52,911 1,642 [ 220 39,707 744
40 55,478 11,434 ;.% LT
4 40,8335 11378 www»cfﬁzjt:)auhbla 6mag.m 8
42 48,199 10,024, 227 35,737 Boz
43 46,8185 10,730 | 230 38,413 821 |
44 43,418 gesoy - 232 | 38105 839 |
45 43,483 _Te,168 235 37,115 858
46 41,654'5 4\ 9,828 237 | 36675 879
47 40,328 NY 9,749 241 36,521 -g04
48 39,107 9,481 244 35,735 932
91 Y g4t 249 | 36394 962
50 . 36 310 9,194 252 37,251 994
51 08352375 9,082 257 35,873 1‘027
%2;\ ¥ 33,8765 8,827 -260 36,023 1 1001
SV 322 8,673 , 266 36,218 1090
54 31,1905 8,362 271 34,181 1134
55 29,6643 8,327 i ‘278 35,306 1355
56 27,695 7049 | 284 | 34385 o 128
57 26,4615 7720 1 (292 33,306 1202
58 24377 7,314 300 | 32,7169 1508
59 22,872 6,085 | 308 30,178 1356
|
6o 21,318 6,756 | 315 | 30178 1409

N
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‘Fhe proportion of members sick, first two vears of sickness, is cbtained
by dividing the figures in column (2) by the corresponding figures in
column (1). Column {3} shows the results of graduating the proportions
thus obtained,

The number of weeks of sickness per member per anmun, first three
manths of sickness, is obtained by dividing the figures in colunin {4} by
the corresponding figures in column {1). Column () shows the results
of graduating the results.

Criticize the two graduations and point out why tests appli;:aék to.
one graduation are not applicable to the other. A .

{
E 4
N/
*
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\
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CHAPTER VI
THE GRAPHIC METHOD

1. The student of physics will be familiar with plotting on squared
paper the results of experiments and subsequently drawing smooth
curves throngh or near to the points in an effort to atrive at some
underlying law connecting the variables.

The graphic method of graduation as used by actuaries is merely
a more rcfined version of this process. It can conveniently be

considered in three main stages, .\:\

1. 'The rough data are grouped. O
2. The grouped data are represented graphically in some.form
or another and a smooth curve is drawn reprodGeihg the
general trend of the data, but not adhering too cl'ﬁs}ly to local
fluctuations. O
3. Values are read off from the smooth curye/2and subsequently
adjusted and readjusted until they $4tisfy the two require-
ments of smoothness and adherence to'data. "This last process
is usually referred to as hand-pelishing.
There are two main ways inww"’fl‘:i‘cﬁhﬁi’éllrir'fgﬁﬁﬂoﬁ'ﬁ?‘be used: it
can be applied to the exposed:co‘ tisk and decrements separately or
the crude rates of decre;pe‘ﬁt can be found from the data and

subsequently g1‘aduated\< -

2. Separate graduati'g:;ti of exposed to risk and decrements.

As broad grouphigs may be necessary an obviously satisfactory
method of rept'e}énting the data graphically is by a histogram. It
should be r&ﬁéfnbered that the rectangles of the histogram must ha\.re
bases P?U};01‘tionate to the ranges of the separate groups, Wh'll:l'll will
not@h’}ﬁ}@ beequal. Ttis rather difficult to decide on the p'rchmmz.iry
gf\uiﬁing, but as a general guide it may be said that suﬁic.lently wide
or “coarse” groups should be adopted to ensure 2 fairly regtflar
outline for the histogram. The drawing of the smooth curve is a
very difficult matter and unless the grouping is satisfactory it may
become almost impossible. _

In drawing the smooth curve care should be taken that in each of
the vertical strips of the original diagram the area of the rectangle
of the histogram is roughly equal to the area bounded by the curve
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and the ordinates forming the sides of the rectangle. The arcas
should not be exactly equal, as the proccess would then be merely a
graphical interpolation and not a graduation at all, We know in
fact from the previous chapters that the graduated values should
differ from the ungraduated by amounts equal to reasonable
sampling errors. The difficulty, therefore, of ensuring that the
smooth curve departs sufficiently but not too much from the data
as represented by the histogram is one of the chi.f drawbacks(of
this method. A

In reading off the graduated values from the smooth QLJ\I:\}é}l'llls
drawn it is desirable to tabulate them either for every age o, if this
is impossible, for small groups of ages which do not cafréé’po nd with
the groupings adopted for the histogram. This i&ﬁcééssary because
in testing for adherence to data the histogram’groupings must not
be used. The way in which the curve was dedwin ensures reasonable
agreement within those groups and wedeéd to know whether the
agreement is satisfactory over all rangbgy’

The tests for smoothness of the graduated rates call for no special
comment, and the g u_cielil,tbs_hr_)ulﬁl;.j‘birr{lembcr to make an inspection
of the deviations and Ia‘cf?;?i%%ﬁfed deviation, preferably for
individual ages. N

As mentioned in _thesprevious chapter it is desirable to re-
calculate the decrefents after the exposed to risk figures have been
graduated so as (ty, retain the same rates of decrement as before.
The adjustedid€erements are then graduated in the same way.

The following example will serve to illustrate the method :

Exam e"}‘ )

b?r'?ﬁnate by a graphic process the deaths and marriages in the following
tables
LA

\»\} » Recorded age » Decremerlts between x and next |
' recorded age shown in the first column
: {exact) - -
| Deaths Marriages
L -
] 16 106 979
20 5o 1281
' 22 64 2069
25, 81 2033
3o 68 756
35 — —
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Tt will be assumed that the exposed to risk figures have already been
graduated and the decrements re- calculated as mentioned above, As the
data are so s¢ anty po further grouping seems possiblc or desirable. It
should be noted that the ranges of the groups are unequal.

]

[

25-1‘_ui‘ *“;:““-«x
a3l \\]3 aaths
o s i N
g <
=L ™
3 i
=
-
E ] i
?S‘ : i '“'1
i (&
" | o
u 0 22 F2) S EE
Ade a

\;

In drawing the histogram the heights of the ;'ec\bangles are obtained

a5 follows:

No. of deaths between ages 16 and 2

A\

"N
o= 106' area of rectangle.

Basc of rcetangle (range of gro“P«)Mdbrauhbrayy org.in
Hoight of rectangle =195 = 2659

Slmlldl’]} height of second leqangle Bi—23,
The following values of\t

derived from the curve |

apply a sat:sfar,tnr; tc,st ﬂdr adherence to data in view

the figures are glnf{ln~

and so on,

the’ deaths at individual ages can then be
he areas of unit strips). It is 1mp0551blc to

of the way in which

. « NV _ e -
| Age x '\\w‘ 16 ‘ 17 18 ‘ 19 ¢ 20 . 22_‘
Deat}:rﬂjetween_ 26-_? " 265 | 263 | 260 255 ‘ 247 | 235

Kooy | |
Agew |2 24 25 26 _zi_ 28 ‘ 29 ‘
Desths between ;.3_|’ 198 18-2 i 169 | I5°9 © 1373 148 |
age x and x+1 ' | .
Age x i 30 | 31 32 | 33 34 | ‘|
Deaths l.)ctween i 14_'4__ ::1, 0_ _13 6 i 13'3 3o | i
agexand x+1 '| ———‘

FMasiii
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A rough comparison in the given groups is as follows:

Ages Actual | Graduated |
16-20 106 : 105°5 i
20-22 50 502 !
22-25 04 631
25-30 81 51-1

~13 68 68:
3033 _ | 3 A
Total | 369 1 702l

M)

The marriages can be dealt with similarly. In this caéé}it wiil be

;i c: ~t}{us .

noticed that the histogram has quite a different sha
Marriages ¢%¢
Tt Qe
A o)
eo0f- /
&, soof-
=
‘B
2 400t .
E «
By 2 ’: I
= 500+ T\
:'g: Al Jl‘auliflg{«n"y .ong.dn
=i “a
200+
=
2 f b
; N
LoD i I\
H £\ ';
2 RN i ]
TR N PN 5
N/ Age x

\/
The vglges‘ derived from the curve are as follows:

,\\*Jkgex ! 16 17 18 i 19 20 21 22 |
R Marriages between | 140 | 165 | 230 | 430 595 665 | 690
) agexand x+1 I
Agex 23 24 25 260 27 28 ‘ 2
Marriages between | 700 675 | Boo 56;3__390 | 103 : 240
agexand x+1 ' ' :
| Ages R
Marriages between | 195 ¢ 165 I;I. 130 125
age xand x4+ 1 ‘ T




THE CARLISLE TABLE 147

Tt is almost impossible to test for smoothness and the comparison in
the original groups is not a satisfactory test of adherence to data. The
figurcs are:

? .Agcs !; Actual ‘ Graduated

. 20 | 979 | 985

! 20-22 : 1281 ‘ 1260

5 22-23 2069 . 2065 _

| 25-30 2033 ! 2035 ‘

e 736 | 755 O\
Total | 7118 L 7100 1O

7 &
Because of the practical difficulties of replacing a higtog}ani by a
smooth curve it is often casier to deal with an ogive curyeand represent
the data by points. ’
Thus tkc data in the above example might be wgi{@n in the form:

| Decrements occurrjnggelow age ¥
Ape x . » .

P. W 4

; Deaths M ?  Marriages
16 ‘ —-—.vi’; 2 —
! 20 V:&'a@\} ‘dbrayilibraryd¥%.in
22 W 150 2260
| 25 ‘ LN 220 _ 4329
30 ¢\ 301 6362
B PN N B

Tn this form the ‘dAta can be represented by points and grac_luated by
the method expﬁiﬁed in the next few paragraphs. The objection to the
use of an Q%i“\}é in this way is that the numbers tend to mount up very
rapidly; ¢hie renders it difficult to find a suitable scale. The graduated
valueg ofi the decrements are found by differencing.

'\N"

N The Carlisle Table.
Before we leave the histogram method of graduating by the
graphic process it is appropriate to mention some of the principal
features of the Carlisle Table. This was the first standard table
constructed on sound lines.
Previously the Northampton Ta
Dr Price, who investigated the reg
Northampton. He concentrated on't

ble had been constructed by a
isters of the four parishes of
he parish of All Saints, where

102
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the records were most complete, and ignoring the exposed to risk
based a table on the recorded deaths during the years 1735 to 1780,
In effect, as he thought that the population had been sufficiently
stable for a long time, he took the average deaths as the 4, column
of a life table. The mortality, especially at the younger ages, was
overstated, but the table was used for many years for calculating
rates of annuity granted by the National Debt Office. ~

Joshua Milne based his table on statistics for the town of Carlisle.
His data related to the parishes of St Mary and St Cuthbeft)nd
consisted of an enumeration of the population in January @380 and
December 1787 and particulars of the deaths in the ye&gs 1750 o
1787 inclusive. D

The exposed to risk and deaths were gradllat€c1\ by the method
described in the previous paragraph and thixesulting table was a
great improvement on any previously availabie. The scxes were not
dealt with separately and the large fe’ﬁic population included
caused the mortality to be unusually,']:ight. As mortality has steadily
improved since Milne’s time t}}is’:light mortality of the Carlisle
Table prevented.it,fapm lceming-gws of date so soon as it would
otherwise have done. N

The extensive sets of joint-life tables published by Milne are
sometimes used fo&{fmisual rates of interest, although some ad-
justment of the dgesMs necessary.

A/
4. Rates of.detrement graduated graphically.

Wh Eﬁe rates of decrement are calculated from the rough data
they €an'be represented graphically by points and the graduating
curve merely has to pass near to these points. Such a curve is con-
sequently much easier to draw than a curve which seeks to keep
areas substantially unaltered. Moreover, a quotient such as a rate
of decrement tends to progress more smoothly than a function such
as the exposed to risk. In the graduation of rates of mortality, other
standard tables may be available giving an indication of the general
trend of g,. This is particularly useful at the ends of the table, where
the data are bound to be so scanty that the rates brought cut are

unreliable, and the curve has to be sketched in the light of previous
knowledge of other tables,
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5§, Pretirninary grouping.

"This is usually a difficult matter and calls for considerable
expericuce and skill. As will be seen in Example z different group-
ings may result in widely differing results. The following remarks
are, howover, of general application. Some authorities, such as
G. 1. Hardy, maintain that grouping with a fixed class-interval
{e.g. quinquennial groups) gives the best results. The general
opinion scems to be however that it is preferable to select groups
in such a way that the group rates progress smoothly. This almogt
invariallv involves the use of groups of unequal range; thesg \i:én\
be found approximately as follows.

% Ny

(i) Piot the rough rates of decrement, without groogﬁiri?g, as a
series of points and sketch in lightly a smooth curm}tépresenting
the general run of the values, This may prove difftettlt, but refine-
ment is unnecessary as a moderate degree qf,:shaéothness 1s quite
sufficient. x\‘

(i) Now choose groupings in such ,;:&;’_aj' that points above this
guide curve are balanced by points'bjebw it; i.e. so that a point some
distance above may be offset bwgﬁﬁmmgiﬁl.mi%%ﬁlext two, of
even three, points lying slightly Below the curve. The aim should be
to ensure that the group ;:aﬁ% swill lie close to t_he general run of Fhe
values. Generally sp 'l{i‘né, if the curvature seems 10 be c_hangmg
rapidly, groups should be of short range; if the curve tises to a
peak and falls agdity care should be taken to ensure that this peak is
not cut off hyyte method of grouping adopted. When the ranges

have bccn\(fgt\éided upon the guide curve should be erased.

6. P I!')t.‘t'ing the data and sketching the curve.

\\ For each group the total deaths {(or decremer.lts) are divided by
the total exposcd to risk and the resulting rate 13 plottetli as corre-
sponding to the middle age of the range. As we have seen 1 Chapter
1, para. 12, this is not strictly accurate, and formula (18) of t}}at
chapter should be used to find ¢he deaths and exposed to risk

corresponding to the central age of each group. |
On the other hand, such a refinement 15 not justifiable unless

the fourth and higher differences are negligible, and the slight
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systematic distortion invelved when it is omitted is automatically
corrected in the process of hand-polishing.

The points representing the group rates should progress more
regulacly than those representing the original data and it should
not be difficult to dfaw a smooth curve passing close to them. The
importance of this step should not be underestimated, because,
although it may be said that the final graduation takes place in
the hand-polishing, this latter process is at the best of timeda
laborious business and may well become very lengthy unlesstagood
curve has produced a set of values which are fairly séfiSfactory
before any further adjustment is carried out. ¢’~:’«

If it is found that an appreciable section of ,fife table is un-
satisfactory by, say, overstating the mortalityN 1t};111 probably be
quicker in the long run to re-draw that part of\the curve and deduce
fresh values rather than to attempt to adjuist the discrepancics by
hand-polishing. ~ x\

Inexperienced operators umally fedtd to adhere to the data w0
closely in sketching their curves “ind, as a result, the rates are
undergraduated, . i ouiibe £ y

The graduation discugsed in Ciapter V, Table V1, ctc. was
obtained by the graphic\process and it will be remembered that
there was evit:h=:n<:t<3{1 undergraduation,

7. Hand—poli,glijrfg.

The rates.of decrement should be read from the curve for in-
dividua "ages and the first two or three orders of differences should
be tabu ated. Scrutiny of these reveals not only where the smooth-
ness' is unsatisfactory but also where points of inflexion occur. If
the first differences are positive, a positive second difference shows
that the gradient is mcreaqmg, while a negative second differcnce
shows that the curve is becoming flatter. Consequently, a change
in the sign of the sccond difference indicates a point of inflexion and
this still applies if all the first differences are negative. The reader
should satisfy himself as to the truth of this by drawing a few curves.
Although points of inflexion are not unknown in mortality curves,
particularly between the ages of 15 and 33, they always require
investigation and they can often be eliminated by a bolder drawing
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of the curve this will also improve the graduation generally. If
data are grouped, divided differences can be used for testing for
points of inflexion. :

For testing adherence to data the processes previously discussed
should be applied and, though grouping is usually necessary because
of scanty data, care should be taken to avoid the groupings adopted
in drawing the curve.

In the light of both these sets of tests, i.e. for smoothness and for
adherence to data, the rates are adjusted and readjusted untjl e
satisfactory table is obtained. If, for instance, there is a Tud of
positive deviations at one section greater than could be acgoltfited
for by sampling errors the curve would appear to be 100 low and
might with advantage be re-drawn. In practice theoperator tends
to concentrate in the first place on a good progréssion of second
differences and devotes too little attention to t};gshqétter of adherence
te data, 2\

\ 7
AN

8. Advantages of the method, R \Q

Although not generally used .féf‘si;andz_xrd tables z_md therefore
seldom discussed in actaarial lﬁf\:?ﬁ’ff'}ibg ?;Hg]é'f‘iﬁl’ﬂ?}'ﬁl&hod is more
widely used than any o‘g}-\e*f, with the possible exception of the
method described in the‘next chapter. .

It is extremcly adaptable and can be used for almost any function.
Above all, it can give good results when the data are 80 scanty that
other method(\f}'ould be out of the question. This Is its supreme
advantage. /&

It is st?}!ﬁmonlv wsed in connection with pension funds and
friendty: societies for functions such as rates of “"ithdrawal' or
reticoment. In these cases each society is 2 law unto itself .and itis

ﬁaﬂy impossible to use a standard table without considerable

adjustment, N -
d allows great scope for individual judgment,

The graphic metho ' L ju
based very often on wide experience, and in this connection 1t should
f the table, which always cause

be pointed out that the ends o . X
difficulty because of scanty data, can usually be de.alt W‘ltl‘} satis-
factorily by sketching those portions of the curve in the light of

knowledge gained from other tables of a similar type.
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There is no reason why the graduation should not be adequate,
since the hand-polishing is assumed to continue until the criteria
for both smoothness and adherence to data have been satisfied.

9. Disadvantages of the method.

Tn actual practice the method is much more difficult to apply
than it would seem to be and demands considerable skill an(_k
patience from the operator.

It is unsuitable for standard tables based on extensive datafghice
a very high degree of smoothness is difficult to achic{e) It is
usually impossible to obtain sufficient places of degimals in the
graduated rates because of the difficulty of reat@i’g more than
three figures from a graph. Q

In this connection it should be pointed ouf that, owing to diffi-
culties of scale, it is usually necessary in gr@ﬁ)ti'ng rates of mortality
to draw the curve in two parts, namelg.dne curve up to age 63 or
~o and another from age 6o or 65 ’t(,):t'lie end of life. When this is
done it is desirable to make th{:?(‘;ﬁrves overlap so as to ensure
CUIltinuity. www_dbr‘aulibl'm‘&‘_é;g_in

In Example 2 it will be noticed that the two curves used did not
overlap but that the cémparatively smooth progression of the
ungraduated rates ¢rsured a smooth junction, Nevertheless it is
unwise to rely on’s %7 an uncertain result.

By leavings€op€ for individual judgment the method also leaves
scope for individtual bias and prejudice, and it must be confessed that
by me%‘o'{‘ the graphic method equally eminent and experienced
workefSumight obtain widely differing results from the samc data.

' ,{Xl,thuugh a graphic process can be used to graduate the ultimate
“portion of a mortality table it is not very satisfactory for dealing with

Select data. These are usually so scanty that it is impossible to form

an idea of the trend until they have been grouped in quinquennial

or decennial groups of ages.

If the group rates are plotted on the same sheet as the curve
representing the graduated ultimate rates, it is often possible to
form an idea of how the select rates run into the ultimate rates,

although the select rates themselves may be largely a matter of
speculation.
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10. Application of the x? test.

It was pointed out in Chapter VI, para. 18, that two hypothescs
were possible in applying the x? test. If in testing a graphic gradua-
tion we adopt the first, we need make no deduction in finding the
pumber of degrees of freedom, which in this event would be the
number of groups.

The second hypothesis involves the fact that the curve was to
some extent “forced” to fit the rough data; the necessary deduction
that shou!d be made on this account from the total number of groups,
is a diffcult problem to decide and there may well be differént®
opinions on the subject. A full discussion of this difficulty ils.’gmfside
the scope of this book. R

At & i

W\
Exarple 2, Female Government Annuitants Tahle™

The Jlassic paper on the graphic method was givembyDr T. B. Sprague
in 1896 (J.1.4. Vol. xxv1, and reproduced in, J.85S. Special Number
on Gradunation) and related to the graduatiomofithe mortality of Female
Government Annuitants four years and upiwards after purchase.

The following results are taken from ¢his paper.

The rough data are shown in 'I;abl@?ﬂlﬁu library.org.i

As a first step the data up to 288 51 were grouped iR threc ways, as
shown in Tables VIII, IX, apd X. )

Comparison of the ratcg gﬁtl\rnortality in these three ta%_)les 111.u§trates
very clearly the need for’\e\%iﬁérience and sound judgment in deciding on
the grouping to be adepted. . ) )

The grouping of T4ble VIII does not appear to be satisfactory since the
rates produced arfe far from smooth. The rates in Tables IX apd X show
that either oftlfe’ groupings adopted would be suitable. It_wﬂl. be seen,
howcver, shabthe rates in these two tables suggest widely differing types
of curve\ From 'I'able IX it might be inferred that the rates ot‘" mortality
from 'igéé 19 to 49 inclusive are approximately constant; 1n fact by
‘{h;ﬁ{gamating the data for the whole of this range this constant rate 1s
fouhid to be 0116, which does not differ to 2 significant extent from the
rates brought out for each of the five groups in the table. o

An examination of the rates in Table X would seem to }ndlcatc that
g, exceeds o159 at age 19, falls to 2 [ninimum at an age in the group
30-35 and thereafter increases steadily. .

In order to docide which of the sets of groupings was ,prefergble
Sprague investigated the data for each of the first fou_r years duFatlon.
As the features of each duration were very similar it will be sufficient to
show the data for durations o-3 combined (Table XI).



. Table VII, Data for Female Government Annuitants,
4 years and over after purchase

age | B | Deatbs | Motel | ago | TSR Deanns | S o
19 9 | - — 61 6038 16 | 019
20 I4 — - - 02 O422 155 ‘024
21 18 —_ . — 63 6762 ‘ 182 0Z7
22 23 — — b4  g247 | 209 024
23 3T | — - 65 | 7599 © 238 | ‘o34
24 37 —_ . — 66 7863 254 032
25 54 2 037 7 | 8obr & 317 | 039
26 1 66 2 030 68 8197 353 ALY
27 . 8 1| o1z 69 8307 | 343 B4l
28 99 1 | coro | 7o | 8372 | 396\ .047
29 130 3 | 023 71 8292 | 498 ) ro4b
70 103 2 012 72 8156 \4;52 ‘e55
3T | 16 L —  — 73 | ygog 058 | 066
32 223 009 | 74 758881 532 1 co7o0

2
33 48 3 o2 | 73 N | sea | cob2
. 34 . 280 3 011 76 ‘..>6>7’13 367 -084
35 . 319 5 016 TN 6205 48 0 088
36 362 5 | ror4 | 3877 5704 ¢ 365 | 099
37 41 L0007 JOwo 5196 562 108
38 473> %‘a lbgpiyPPegd | 4664 | 549 -118

39 571 1 2 ' oo | 8x | 4142 558 ¢ e1ag
40 1 653 17 020 32 3576 479 134
41 . 733 gy o1z 83 3070 481 137

42 833 W20 cor4 | 84 | 2875 399 | 153
43 941 |\ 9 ! om0 85 | 2146 404 | -188
44 1097 P12 1 ol 86 ' 1706 342 -200
45 12{2“3 17 . ol4 84 1332 299 - 224

ER T 5.1 ¢ 21 a1g 88 1018 210 206
47 ANI78 13 | -oof 89 =88 | 208 | -264
; 48“ 61 | 14 ool Go 569 160 281
| 29" 1958 26 ‘013 91 ' 301 115 294
N80 2160 22 ; -0IO 92 265 72 272
51| 2387 37 | 016 | 93 189 63 | 333
32 2669 43 ‘o016 G4 121 | 139 322
53 2009 51 018 95 28 | 31 397
54 3330 5 018 gb 47 12 255
55 | 3682 57 | o135 | 97 34 | -529
56 4104 83 . 020 | 98 ' 16 9 | ‘563
57 4473 86 019 9g 7 4 571
58 | 4883 go | 018 | 100 3 - -
59 5281 123 023 101 3 2 -607
b0 | 3644 | 138 | 024 | 102 I

— =]
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Table VIII
o T | Exposed | i Rate of
[ ae | ETRS | e | el
o o | _
1g-26 252 . 4 0159
2729 | 314 ‘ 5 ‘ -0159
o333 830 g 0084
L 34,35 | 599 0133
| 36,137 ‘ 776 ‘ 8 ‘ 0103 Q)
18 473 6 0125 A
30, 40 | 1224 ‘ 15 o123 A\
41,42 | 1566 21 | 0134 N
43, 44 ' 2038 ‘ 21 i 0103 ON/
a4y 4240 51 oy
a0 | 3710 40 ‘ \oles
50, 31 4547 ¢ 59 (\\P13©
""" s T o | s —
—— o ’ ‘_Y..%\_.l
Tﬁ%«ﬁrﬂ'mr_‘yﬂgﬂ_.—l
T Brnosclts Rate of
Ages | Exposell | Deaths moctality
i3 L OMmg6 |16 o115
‘ a7 K Ters 8 o117
3840 1697 ‘ 2 o124
1144207 3604 42 o117
e | 798| O orrd
| esése | s |9 0
2’\
o) Table X
—— 7T | Rateof
‘ Ages I P?épfii.id | Deaths moai‘:ll?ty
_ 19—29; _‘_ 566 ! g 0159
‘ 30-35 1429 15 o105
3638 | 1249 I4 '9”3
‘ 39-44 | 4828 57 oLl
45-31 . 12512 I 150 0120
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Table X1
Exposed Rate of
s | BEEE | e | MR
1520 | 102'3 2 0145
21-27 [ 5010 6 0120
28-32 ! 6753 7 0104
3337 . 13360 10 -0074
3842 ‘ 25483 19 *0075
4346 | 31799 35, oro
47-49 31960 29 0091
Total i 11,5506 ‘ 108 | a\‘

)
A
1

B

N

7

{

The trend of these rates was not materially affected b):%thcr groupings
tried and Sprague accordingly decided that the mogtghty did decroase up
to say age 30, On this assumption the hest éfythe three methads of
grouping the ultimate data was the third, whic}} he thercfore adoptad,

For ages 52 to 70 the rates progressed fig¥e regularly and the choice
of groups was much easier. The following groupings were used:

www.dbraulibrary.org't

Table*X1I
r : ; - [
Ages E?‘ fi?(d © Deaths rgc?’rt:al?tfv —|
52755 5| Ni2,500 210 o167
56-58 L) 13,462 259 0192
590X 16,963 377 . o222
G2 6,422 157 | 0245
\153 6,762 182 0269
R 7,247 209 0283
, 63, 66 15,462 512 0333
~O 67 8,061 317 0393
\/ 68 8,197 353 0431
69,70 | 16,679 739 0443
Total ! 111,845 3315 —

Q)

Finally, with certain exceptions, the data over age 7o were used for
individual ages; the data were amalgamaicd for the following ages:
81 and 8z; 83 and 84; 83 and 89; g2 and g3; 95—¢7; and ¢8-ro2.

Because of the difficulty of finding a suitable scale for the whole table
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Sprague used two curves, He used one curve for ages up to 70 and a
second curve for ages 71 and upwards. Although, as stated on p. 152, it
is usually desivable to construct two such curves so that there is a shight
overlap, Sprague succeeded in effecting a smooth junction without this
precaution,

The reader should plot the points representing the data, grouped as
above, and should graduate them graphically, including the final hand-
polishing.

In order to enable the student to criticize his own work Sprague’s
graduated rates are sct out in Table XIIL N

It is a useful exercisc to analyse these results, testing the smoothness by 2N
differencing and also testing adherence to data by calculating the devid=\"
tions, accumulated deviations, square root of the expected deathjs,.f;f-pd'
finally 2 by the methods described in the previous chapter. ’

%4

N
Table XIIL. Sprague’s graduated values of ga) .

Female Government Annuitants. 4 years and upvﬁ(’ds\after purchase

Age | G

i Agc : s Age : e Age .é::,,'.

1g | o180 | 4o onaz | 61 0 10232 $2 ; -1400
20 ' o178 41 wor21 Ww ggbraudidpgary orfin| 1520
21 | cor6 | 42 | rorrg | 63 | -ez7e 84 | -1660
22 ‘ QLT3 43 | -orib N 64 0204 85 1830

o169 | 44 1 -oafft| 65 o3l 86 - 2000
23 . o6z | 45 | edaz | 66 ; o350 | 87 ) 2070
23 ‘ o151 | 46 {Nor1z | 67 | o380 88 | -2340

26 0143 2} o114 68 '0410 89 2500

7 | o135 |48 | orxs | 69 | oM0 go | 2050
28 0128 e .4‘9 oIzl 7a ‘0470 g1 2330
20 'OI\Z\K\“ 50 0130 71 *0500 g2 r3000
30 | -@ité | 3z o140 | 7z | rosbo 93 | 3200

31 |Biio | 52 | o155 | 73 -0630 o4 | 3390
3¢ ) oros | 53 0163 | 74 | 9790 2 .356300
33 ‘0103 54 Q170 55 Relirle] 96 3820
34 0103 55 0177 =6 -0B40 07 4100
33 0106 36 0184 -7 -0g10 g8 *4390
36 ‘QIeg 57 *0I9IL 78 '0Qoo jus ..‘r660
37 0I13 58 0Lyg 79 -1080 100 -acoo
38 ‘o118 59 0208 80 1180 101 .345.0
39 ‘0I20 fo {0219 3 12G0 102 -bago
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Example 3.
Table XIV. Graduation of marriage rates

! E_xpnsed " No. of | Rate Lxposed | No. of | Rate of
Age | to risk of | mar- of Age ito risk of | mar- ate 9
| marriage | riages ; marriage !marringc| riages ~ TMAMTREC
20 | 1100 o — 31 oo | 45 i 0750
21 1100 6 0035 3z oo ¢ 40 | -o8co
22 1100 2 0018 33 500 | 44 ; -o8¥o
23 1100 13 0118 14 . 400 15 ‘ -cd75 N
24 1000 17 "0I70 35 400 30 | 0550
25 1000 18 0180 6 R e B
5 3 400 25 M\NTUES
26 goo - 36 ;| o400 37 300 21 ¢ W 0700
27 Boo 34 0423 38 300 | I (0300
28 700 i 49 0700 39 300 |72 WFOD
20 700 49 0700 40 o8\ 15 0300
: Total | jaiso | 563 -

_ There appears to be no advantage in gfaduating the exposed to risk
and marriages separately and we shall acbordingly operate on the rate of
martiage. RN

Suitable grou‘ﬁﬁi@’s%%‘?”b@@fﬂ&%&lﬁiéhly after repeated trials, but a
rough sketch of the curve suggests that the groupings shown in the
following table should give good results.

It should be borne in mind that these may not necessarily be the best
groupings; there ma}r;{é\b’eﬁ ers which will give cqually satisfactory results.

!‘_ T

| Agrnge yCppaae | Bowed [ Nooof [ Ruent
20—2:2.\’;;.\'} 21 3,300 | 8 ! ‘o024
23§¢" 23% ‘ 2,100 ! 3 0143
(2320 235 1,00 54 <0284
2728 274 1,500 8 | 0333
~N\ 29 29 00 49 ‘ 0700
N osoar o 30% 1,200 93 | 0775
32-33 32 1000 84 -840
34737 35% 1,500 111 ! 740
3840 39 goo 51 ; 0567

Total | — 14,100 563 —

Sometimes, in a particular group, it may be desirable to use a weighted
mean age instead of the central age if the numbers exposed to risk are
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very unevenly distributed. In this example such refinement was un-
necessary and the rates shown in the last column were plotted as corre-
sponding to the central ages shown in the second column and a curve
was drawn passing near these points. The position of the maximum
ordinate causcs difficulty in this particular graduation.

0-088 ' *x
[H0E}
oni
=064

0-036

T
&

Rates of marriage
g
<]

(032

=24
$ “4'.
/
;"\0'0[6
R\
NNy )
= G-008

The graduated values read from the curve are shown in the following
table, only three decimal places being recorded (the fourth would be
quite unreliable), The first three orders of differences are shown so t_hat
the smoothness can be examined. It should be noted that the two points
of inflexion which from the general shape of 'Ehe curve seem to be
actual features of the expericnce to be retained in the final table.
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Table XV

Ti Rat o
20 I o1 ‘
-+ 1
21 002 .
s
22 005
+5
z 010
3 L6
z, 016
4 + 8
25 r024
+ 11
26 035
+15 ¢
27 ‘050 O
+1‘2{:}"
28 ‘062 N
L S
www_dbr‘au[ibl'aﬁy‘%r%_in
29 071 D
/‘\ v + 7
30 078 LN
|_ L O + 4
31 i x"g}z ‘
|..,&“: | + 2
12 W 084
o I
N
» -
W34 ofo |
* ]
| 35 076 |
| s
! 36 ‘O7I
! ~5 |
i 37 066
| -3
l 38 ob1
| -4
39 057
-4
40 053

o (mg)s | TobxA(mg); | 708X 8% (gl | 100X AF (m“n’J

+2 ‘
0 :
-2 /’\‘
-1
+I ‘:~}\ii ‘
+2 “\\ '
;:\}3 +1
+&v
* X + 1
\}
\\\+4
N —
&

a
S,
—z ‘ ‘

—1

S

| -1 ‘
-3

o
—a |

|t
o |

o ‘

-1
! +1 ‘
o
-
o]
+1 ‘
+1
e
. |
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The follosing tabie is also needed for testing adherence to data:

Table XVI

hfép}:cted 111a111agc.s has been taken as an apprommanon to the stan-
dtdMérror of the deviation, but the more accurate expresswn wExp,,gz

Wotld not mater jally affect the results. Itisseen that the deviations change
Slgn 16 times as compared with only 4 continuations of sign; t_hls is not
unsatisfactory, although the accurnulated dewa tions are negative above
age 36,

The individual deviations never exceed twice 1he standard error except
at age 21, where the number of marriages is so jsmall as t0 make the test
UDrellable_ We do not get any runs of deviations with the same sIgn
and of substantial amount which would nced o be tested as a group,
while the net deviation of —3 is satisfactory.

FMasgiii _ 17

: Age | (}1'_adu— Exposed Ev.pectt:d! Ar;t;dl : Deviations ! Ac]zxs:;u— Y ‘
1ated mtel o risk :marnages riages | 5)—{4) deviations !aL)I)ro_‘c_.
{r} | @ @ W {3) i © . O L ®
20 | oS L109 i 11 ‘ o - Il L 1 )
21 ' o0z , 100 © 22 ., & + 18 + 247 1 O
2z | ooy P op100 ‘ 55 ‘ 2 -5 I - 8 2N
23 2ID 1,100 1o . I3 + 20 + rz '.\3 e
24  ro1h i 1,000 | 160 ‘ 17 + 10 + 2z N4
28 | 024 1,000 24:0 18 - 60 - 38N 3
26 o35, goo ;o 3us | 36 | v45 | KO
27 | 050 | 800 | o0 | 3¢ 1 = 6o LN 6
28 |, o6z yoO 43°4 ‘ 49 ‘ + 56 (\M 3 7 |
29 | o1 \ 700 | 499 1 49 1 — ;9\\L - 6T
30 078 6oo 468 | 48 +,,\'L‘é' o+ b T
31 | 682 ‘ 600 402 ‘ 43 | P2 — 36 7
32 o8y ! zo0 420 | 40 M 20 - 56 6
33 | ‘o83 . 5co 41°5 ‘ s W+ 25 | - 3 b ‘
34 ' -obo | 460 320 W@ﬂblauﬁbﬁé?ybrgﬁn ; 6
35 ;i -o7h 400 304 ~.",'30 - 4| = 5 5 |
30 ‘ ‘CFI ‘ 460 284N - 25 ~ 34 | -39 I
37 0 vobb | ozo0 |8 | 2 | A T2 =27 |4 |
38 ‘ ebr 300 \\\’1"8-3 15 | - 33 |~ 60 | 4 :
39 057 ‘ 300\ | 171 | 21\ | + 39 | -l 4 |
T N R AN E A 3o | 4 .
Total — ~\,\I4,Ioo | 5660 | 56"5 1‘ +287 * 7:7 | Lot |‘
L _i A\— IS N _|_:_.31_T_|—_rf.2____
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]
]

The total of the deviations irrespective of sign is 287+ 117 = o4,

while -8Zv exuected marriages is 8o. 'These figures are suﬂmwntl\ close
to give no indication of under- or over-gracuation.

Looking at the table of differences we sce that A% (mg)y; is -007, which
is large as compared with the other third differences. In altering this it
should be borne in mind that the accumulated deviations above age 20
are all ncgative, suggesting that the curve is rather too high around ages
25-30.

If we alter (mq)y; from -050 to 048 and (mg)y, from 062 to -04% th}
run of the differences is improved and the largest third differcnce, L'u\ ‘s
AS(mg)s, 18 now only —~-003. What is perhaps more 1mp{:1la\1z i the
surprisingly large effect which these slight modifications hawe on the
accumulated deviations. &N

The revised figures for ages 27 and 28 are as followg:! \

/N

! k - [ Accumu- |

Age Liraduated| Exposcd Expected ?ﬁg’;jl Dicviations | Cl:;:iu

rate to risk | marriages riagéyl’ (5)— (43 deviation

( (2 (3) @ @ ® 1

27 "048 300 3844 34 — 44 =37
28 061 700 42\7 49 +673 +2:6 |
ww dbraulibraty.or . ) -
‘I'hus the accunmlated clev?ata*gna §iom age 28 onwards ave all 2'3

greater than they were befote and several changes of sign are thus intro-
duced. The net dev mtmni‘snow only 7, while the accumulated deviations
add up to +18-2 2124 result much nearer to zero than before. The
total deviations irrcxcctwc of sign become 59°5.
The graduati:)r'; ahay now be considered satisfactory.
(N
‘S M BIBLIOGRAFPHY

“Paper’ on the Graphic Method of Graduation.”
oo ¥ 1A, Vol xxv1, or §.5.5. Special Number.
{\; “Tests of a Mortality Table Graduation.”” H. L. Sgar. 7.7.4. Vol. Lxx1.

T. B. SrrasrE.

EXAMPLES 6

1. A Life Office which does not grant surrender values until three
complete years' premiurs have been paid has obtained the following
data from its experience of withdrawals (lapses and surrenders com-
bined) under Whole Lifc Policies.

Graduate the rates of withdrawal graphically, and write down the
graduated values. Commient on any special points arising,
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‘ Curtate Cxposcd to risk R ' Rate of
| duration of withdrawal | vithdrawals © i frawal
i # B, W, oy WL E,

o 11,000 299 o1g
l 1 10,000 650 0by

2 4,000 1215 175
; 3 7,000 679 097
i 4 5,500 352 064 A\
: 5 4,000 196 049

) 3,000 102 034 O\

= _ 2,500 92 037 fN
i 8 i 2,000 43 022 4\
‘ g ‘ 1,600 56 035, )
! 10 ! 1,200 36 ...{G‘zb
: 11 I 1,000 21 )02t

L S R SN, S

2. Given the following particulars, fmﬁ‘ intcrpolatcd values for
durations o to 26 weeks by the graphic mcthod:

No. of wecks U 2 but .} 3 but 4 but g but | 13 but
sickness since r?dcr undgival, Jeder ), under | under | under |
accident 2 weeks | 5w dde 'ﬁlbc’e%ml DEAEAEI & Nwvecksl 26 weeks‘
- |— ; —— —
No. of cascs 470 L NIg70 1510 120 203 159 |

7

3. Lmploy the gr%

below the adjustpd-rates of mortality

you know to \tﬁa\ Tesults

S

—

3

N/

A\ . ,
rie method of graduation to obtain from the data

for ages 47-67. Apply all the tests
of your graduation.

I Exposed

‘AgiQ;}opfiZ?{d !Deaths! 168 %g, | Age | torisk Deuths | 1ofxg, |
AN 166 2 120§ 58 628 o, 1752 !
N8 187 z 1070 59 | 7°r 14 | 1997 ‘
N 49 218 4 . 1833 | 6o | 813 18 2214
30 243 6 ; 2460 b1 ‘ QI7 13, 1963
st . 276 2 725 62 1040 24 | 2308 ‘
52 | 302 4 1325 03 | 118z 10 2538
53 347 | 7 oty | 64§ 1290 | 43 | 3310 |
54 390 3 769 | 65 ° 1a3z | 41 1 2863
55 - 430 | o | =005 | 66 | 1396 | 34 ‘ 3383 |
56 404 9 1822 67 ‘ 1752 64 | 3653
| 37 558 8 | 1434 : | |
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4. A serics of values of g, which were obtained from deaths, #,, and
exposed to risk, E,, is to be graduated by a graphic method. It has been

. . . 248
suggested that if the two sets of points given by g, & ;’—” are plotied on
’ &

the graph, then any smooth curve lying entirely between these two sets
of points will give a satisfactory graduation. Comruent on the suggestion.

5. Graduate the following cxperience by the graphic proccss. What '\
limitations as regards (@) the graduation, (b) the tests of the graduasion)
are imposed by the way in which the data arc given? )

N
N [Exposed to | Actual Freporod @1 Actual |
‘ Age-group I ris)l{(pgfS L|:1ea‘?hl decatu}i. Age-group irisfcpgi'ilqshi' dsa‘ti:b |
| . : S — =% —
s |15 | — 074 | (HWO | 195 i
| 3530 | 5O — 75779 G NS38  HT
TR 189 | 2 Ro-84 (Y 2,510 286
| 4549 | 47 8 85-8on 1284 | 198 |
3054 1 1,020 ‘ g gagy 365 |11
| 55739 | 2032 3¢ | 495799 62 |
;o bo-64 ! 3,300 54 {100 and over 30 2
! 63569 | 4,28% 'd4"34kﬁrj?{:~ﬂ-31‘8-iﬂ | ' l
! 'i | N Total | 23,220 I_ 128z |

.iw3\
\\‘..
6. Find, by the’graphic process, graduated values of g, from the

following datas, {7

(i) by scga{até graduation of the exposed to risk and deaths,
(ii) b&gméluating the group values of g,.
FaN

S\ — R
|, 7AJe-group | tiPEZi Actual Age-group | }t;pgif( Actual |
S | of deatiz | deaths | of deaih ‘ deaths

\_x_. | o J— , - ._!

‘ 30-34 9 - 65-69 829 , 40

o353 | 22— 70-74 | 84 | 51
| 444 M — 7579 1 796 85

| 4549 | s - So-8, | 45 | 69 |

50754 ‘ 94 9 8589 ' =217 | 34

ss-59 | 395 | 10 90-94 | 49 [t |
6004 678 ‘ 27 95 and over | 3 ‘l 2

. N IR

'| Total || 4622 || 363 |
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7. From the following data obtain by the graphic method graduated
values of ¢, for ages 43 to 60 inclusive, and apply the usnal tests to your

s Age s | F, @ | 2
0500 46 100 2 | o200

- 47 110 3 0273

- 48 110 1 00G1

— 49 100 3 0300 | A
0333 50 100 1 0100 |1\

- 51 100 I -o1oo{ I\
QRGO 52 100 - T\-\\ ’

— 53 100 1 A}pm’o

— 34 100 I AN 9100 |
0400 55 100 zf\» 0200

-- 56 100 \.\"} © o300

— i mo\\\ 2 -0200

- 58 LI?}' 3 ‘0273

— 59 JNNe - -
0143 fo {PH¥IIC 3 0273

— ﬁ‘,f’.x 110 3 -ozgg
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CHAPTER VII

GRADUATION BY REFEREXNCE
TO A STANDARD TABILE

1. In this chapter we shall deal only with rates of mortality, but if
a suitable standard table can be found for other rates of decrement .
(e.g. withdrawals or marriages) the method can be applied quite
satisfactorily. Ttis rarely, however, that such a standard table exm.t?a
All mortality tables commence with a portion where dy; D, the
slope of the curve, is small and finish with a portion ghere it is
steep. A method which may be satisfactory for OI*Q\palt of the
curve may be quite unsuitable for the other; for dhgtance we have
mentioned in the previous chapter that, in applying the graphic
method, two curves drawn to different sca{es\usuallv have to be

employed. "N\
In order to produce a flatter curve ‘than that given by v=¢,,
a function such as lo 1) 1s sornetlmeq calculated from the

wiw w o by auhbl

data, This function 15 then gr 9h8d nstead of Gy

The most satisfactory method for restricted data is, however,
to use 2 standard table as'a ¥ base curve”. There are many ways
in which this can b &n‘nia. One of the simplest is to calculate
the ratios of the ¢'s/grived from the data to the corresponding g¢'s
of the standard, &dble and to graduate these ratios. Clearly if a
suitable tableyis”taken for the base curve the ratio should not
vary verygieatly from unity. We are here in fact graduating ¢;/¢.,
where ¢f 1 the rate derived from the data and g, is obtained from
the, sgériﬂard table. The ratio may quite well be graduated graphi-
¢ally’on one diagram.

Tt is intéresting 0 note that the first recorded instance of the use
of a standard table was in a graduation by Griffith Davis. In this
graduation, the ratio g;/g, was adjusted graphically (J.1.4. Vol. x1).

2, Lidstone’s graphic method.

In a paper in J.J.4. Vol. xxx, G. J. Lidstone greatly improved
on this method by dcaling not with the ratio gl/g, but with
log (p,/pz), where as before unaccented symbols refer to the
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standard table. "This function produces values which are not only
smaller than ¢//g,, but which usually progress more smoothly.
The following quotation from Lidstone’s paper is important:
“Considering first the mortality table to be used in calculating the
expected deaths, it is evident that smoothness of graduation is most
cssential, more o, in fact, than close agreement with the observed
rates of mortality, since any irregularitics in the standard table
would be reproduced and possibly exaggerated in our final results;

for this reason a table following a mathematical law—as, for exzA
. . 2\
ample, Makeham’s—swill generally be the most suitable to emplog™

If 11! =g, +¢ (where ¢ is a constant) all the values of p; will bear
a constant ratio to the corresponding values of p, and tb{«;.furff:tion
log p,—log p. will be a straight line paralicl to the axis,of x. The
special case when both g, and p, follow Makehath's taw was also
investigated, but most of this work is now gf:\tcs‘s interest than
formerly because it is rarely that a moder éxperience can be
graduated successfully by that law. )

3. Formulae methods. ~ .

In order to obtain values w e i’fg?g%%]sgrs?%&ﬁf?‘enou gh fora
graphic graduation to be sug€essful it is usually necessary to deal
with functions such as , afid g, rather than with the exposed to risk
and dcaths—-although‘t‘héé are to be preferred on general grounds
because they give effsct to the weight of the data at successive ages
or age-groups. ) .

For this rcaso}l"it is usual to assume some algebraic relationship
between,‘%j ¢! and ¢, and to determine the constants in the
relationship by reference to the exposed to ri_sk and deaths.

Ii’l&;\’following are a few of the formulae which might be used:

" g.=ag,+h. (If b=o this becomes g.lq,=constant.)
2. pL=dap,+b
3- gn=g,{ax+b).
4 o=t + K.
5. g, =aql+bg®, where gf) refers to one standard table and

72 to a sccond. Usually the mortality rates to be graduated are
intermediate between those of the two standard tables.

Q
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In these equations a, b, K and »n are constants.
The following points arise in the application of the formulae.

4. Formulae 1 and 2,
If we assume for every age that g, =aq,+ b, it follows that

E,qp=0aE,q,+bE,,
2E,q.=aXE, ¢ +bZE, }
and 32E, ¢ = aX2E g, -+ BZ2E, |

E_q; is merely the actual deaths observed at age x, nhﬂ}le E.q,is
the expected deaths according to the standard tahk:\ Avhen these
expected deaths have been calculated it is a simplematter to derive
the equations (1), which can then be solws@ for @ and 4. The

example later in this section will give the @talls of the caleulations
involved. "N\
When the data are grouped and Ej ihot available for individual
ages the expected deaths are usu,a]:l} calculated by using g, for the
central age of the'grodpulibfarirereup of five ages 3034 g5, would
be used, while for 2 group offoulr ages 3033 g3 would be used. The
slight error thus mtroducx:d 15 not a serious matter when the data
are scanty and sampligy ‘errors are therefore considerable.,
Similar remarkshapply to Formula z.
5. Formula?h"

g ‘her«e}are several ways in which the constants @ and & can be
found; The follomng method is probably the best.

. {Mt q4/q, =y, so that the equation can be written:
3

y=ax+b. . (2)

We have to determine the constants so as to secure the best fit,
having regard to the weight of the data at each age or in each age-
group.

This is precisely the problem which arises in fitting a line of
regression to data when frequencies have to be allowed for; the same
method can therefore be employed,
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First tabulate y for each value of & or for the central age & of each
group and take as the corresponding frequency some convenient
number roughly proportionate to the exposed to risk on which the
value of v is based. (I'he actual values of the exposed to risk would
make the work very laborious without achieving any material
improvement in the fit.)

Treating 1 and # as correlated variables we can then find the line
of regression, y=ax+b, and hence find g, for each age from the
known value g, at that age. A

2N\ \“.
6. Formula 4, :"}‘ N

Unless Makeham'’s law applies approximately it is impessible to
find # except by trial and error. The method in whi¢h the formula
can be applied and K determined will be appare t.when we con-
sider Makeham’s Jaw in Chapter IX, Forthe mowent it is sufficient
to note that the formula pl=p,.,, + K has.pr'gietical advantages.

It will be remembered that N

")
~

a;i log Dysctfiyabifrary.org.in
X RN N

s0 that an addition of K tom;f@“has the same effect on the values of
dlog D_{dx as the same addition to the force of intcrest 3.

It follows that the galues of Dy, I, and &, are the same if we add
K to the force of interest as if we add K to the force of mortality.

It thereforc,.xié find it possible fo assume that

O~ po=timint Ko
many f}iﬁ;:tions can be obtained from tables based on the standard
mQx;ta;ﬁy? by adding 7 years to the age and by adding K to the force
Of\'m%ercst. Annuity values can be derived in this way and the single
and annual net premiums can then be deduced from Premium
Conversion Tables using the true rate of interest and not the rate
produced as a result of adding K te 8.

In actual practice refinements are out of place in using la table
based on scanty data and it is usual to add K to the rate of interest
instead of to § and to round off the result to the nearest rate of
interest for which functions are already tabulated.
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7. Formula 5.

If the decremental rates of the special experience scem inter-
mediate between those according to two standard tubles this
method can give good results.

Since ¢ —ag+ bg,
ZE,q;=aZk,¢P +bIE g7 } (3}
and B2E gl =aSE, g0+ BE2E g2 T 3

Thesummations extend overall ages,and once the expeeted dY:ie\aths
according to the two standard tables have been caleul md Hie con-
stants @ and & can casily be found from equations ,(J .

It should be pointed cut that when the a\-'ail“zgt{li:'consta.nts are
connected by linear equations such as (3), dinsar constraints are
said to be imposed. In applying the x? test \thercfore, it should be
remembered that two degrees of frcgdom\arﬁ lost.

As an example we shall deal with @&gsdduation by a slight modi-
fication of Formula 1. The metht;ld Mustrates most of the points
involved. Ny
www.dbraulibr:al?y,brg,m

8. Example.

Graduate the followinglexperience by means of the formula
)

8 g=ag, ., +5,

where = 10 and, £lle values of g, arc taken from the H¥ table {Makeham
Graduatlon) ¢ denotes the number of deaths between age » and x+1
and F, is t}re\eorrespondmg exposed to risk.

Age 2\ Ex | 8, |Agex | i, i f, | Agex i £, ! B i
;\36' 1000 5 | 4o 1600 7 so . 1boe 12
31 1100 4 41 1700 . 12 st , 1500 |13
32 1200 5 42 1700 3 52 | 1500 ! 14
33 1300 6 | 43 1700 14 53 1400 ° 12
34 | 1400 6 44 1800 1z g4 1300 ¢ II
35 1500 8 45 | 1800 12 53 1200 | 13
36 1500 6 | 46 . 1800 14 56 1 1100 | 8
17 1500 8 1 47 . 1800 14 57 | yoco 1t
33 1600 1ot 48 | 1700 10 33 l Goo 9
39 1600 7 49 ; 1600 13 59 | 8oo 9

l J i bo 8oo |__8._~




The nccessary calculatio
(4) of which shows the expected deaths accord
Column {3) is obtained by summing column {2}
top downwards: Le. the rth entry in column (3) is the sum of

ILLUSTRATIVE EXAMPLE

¢ entries of column (2.

171

ns are shown in the following table, column
ing to the H™ table.
successively from the

the Drst

Table XVII
) Age ! E, ; IE, Yo PR | Zi4) & Eﬂa_-—!
o e | @ ® | ® | @
T | " — J— - e —_——— _E. P— —_
i 3¢ Loo0 [,000 57 547 5 ‘ 5 LOW
! 31 1L100 ‘ 2,100 G5 1 Iz4 g | 9w
‘ 3z | 1,200 3,300 77 ‘ 201 5 ‘ T4
33 | 1,390 ‘ 4,600 87 288 6 IR, 20,
I 34 | 1400 | 0000 g7 ‘ 38-5 6 4020
| 36,500 © 9,000 | 108 ‘ 55°G N RN
b 37 | 500 ‘ 10,500 e . 709 ¢ NG ‘ 48
| 38 ' 1,600 ‘ 12,100 119 ‘ 82‘-8’\ A
© 39 | 1boo 13,700 121 94y 7 65
‘ 40 | 1,600 | 15,300 123 { w1972 I7 ;i
41 1,700 17,000 DI TP o'y 12
i 42 . 1,700 ‘ 18,700 * 13.%,“‘3111]}4.?57-0‘8-5“ 8g
' | 1,700 20,400 | 180 ! 1482 14 103
‘ 44 1,800 ‘ 22200 {N\I3°1 1633 1z 115
43 1,800 24,009 )" 1575 ‘ 1788 12 127
| 46 1,300 ‘ 25,860 | 159 1947 14 | w4
-4 | 1,800 27,600 16-4 | 21T 14 | 155
| 48 1,700  ANEH,300 159 | 2270 e | xig
- 49 ‘ 1,6007, M 10,500 155 ‘ 2425 13 17
| 50 1,068 32,500 o | 2585 12 190
bosr | Z500 | 14,000 136 0 74T 13 ‘ ZOE
| 5% ij'iar,soo ‘ 15,500 162 ‘ 2903 14 217 ‘
53 (Y 1400 |o3bgo0 ) ST gobo | X2 | 229
I \5&‘: 1,300 18,200 152 ‘ 3212 1z 240 ‘
55 1,200 36,400 147 3359 Ig | fgf’;
| 56 ‘ 1,100 40,500 ‘ 141 3500 | 1
57 ' 1000 41,500 135 3635 | L Zé
| 58 | goo | 42400 | 127 3702 | o | =
59 ° 8oo 43,200 119 38 19 29‘; |
6o ‘ 800 44,000 | 126 4007 | 8_‘ 208
LTotal'j 44,000 ,_’729,100 | 4007 8551 | 208 I 4282__j
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Similarly, column (5} is derived from column (4) and column (%) from
column {6), The sums of columns (3), (5} and (7) then give the values
of 22E,, X2E g, ,, and Z¥), required.

Note that the sum of ¢olumn (2) automatically checks the last entry in
column (3} and similarly for the other columns. Columns (3), (5) and
(7) could have been obtained by summing from the hottom upwards.
The values of @ and & would be the same whichever method were adopted.

The equations corresponding to those numbered (1) on p. 168 arc:

2g8= 400-7a+ 44,0000) ~
and 4282 = 585512 + 729,1006} \
oA\
These give a=-8363 and b= —-cooly, A\

The graduated rates of mortality can be derived from 'ghﬁ;‘c\{matian
¢, =8303¢; 10— 100084.

¢

'I'he actual deaths and these expected according™® %e graduated table
“(not the standard table} should be compared;«dwing, however, to the
small number of deaths involved any elaboratsttests would be out of the
question. There 15 no need to test for qmb@thness, since the standard
table was graduated by a mathematical~forh‘1ula.

9, Advantages of the metbhod

www dbraulibrar
The method of graduatmn by refe1encc to a standard table is

particularly valuable when'the data are scanty, so that most other
methods arc out of the\question. In such cascs even a graphic
graduation would be latgely puesswork.

If the standapd table is smooth (as it certainly should be) the
results are batisfactory as far as smoothness is concerncd and it is
possible tg éohcentrate on tests for adherence to data.

Knowledge of other tables based on similar experience is auto-
matigally brought into use in the process of graduation.

The mecthod can be adapted to select tables, but with scanty data

o~ the ‘select rates themselves are suspect, as the sampling errors are
50 great. '

The ends of the table cause Lttle difficulty, but the reliability of

the results may of course be doubtful,

10. Disadvantages of the method.

It is not always 'possible to find a suitable standard table, so that
even if the constants. in the graduation formula are chosen propetly
the adherence of the msults to the rough data is not satisfactory.

i}

\

5

N



EXAMPLES

BIBLIOGRAPHY

“(raduation by reference to a Standard Table.” G. J. LIDSTONE
F.£.4. Vol xxx: “Reprints”, 1935,

EXAMPLES 7

I. Show how a comparatively small mortality experience may be,
graduated by reference to a standard table: )

N
(&) by a graphic methoed; A
() by a formula so that the first and second summations of g}{e‘a\;tual

deaths and the cxpected deaths are equal. RAZ

Give any conditions necessary for, or restrictions to beMimposcd upon,
the use of the methods stated. \\ )
§
&

2. The values of ¢, given in the following schedule are to be graduated
by the formula \ o

,=a+b f"’:::‘
(& wwwgﬁbraulibr‘al'y_m‘g_in

where g;, values of which are givenf‘iﬁ the last column of the schedule,
1s the rate of mortality according;to a standard table.
Obtain values for the cons’gmjts a and b.

N/

i E . ! E]ngraduated Standa‘hrpd_.}
Age x i prqs's'%; Deaths - rate of rate of ,
te r{sk | mortality g, mortality ¢,
e ._| 7N 4 I —_
So (D250 35 1 o 134
g; O 200 25 : “125 ‘144
- '\\ A 3
B2 N\ 150 22 147 34
S 120 21 175 1103
.\&1‘ 100 8 R0 1’;6
s e R s
86 50 9 ‘180 200
87 30 10 333 213
i bt =0y 5 '2‘50 227 |
‘ 89 ! io 5 500 242 P
—— . ! L I

Q)
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3. Graduate the rates of muortality of Example 3 at the end of
Chapter VI by reference to a suitable standard table, adjusting the
ages if necessary.

4. Obtain graduated rates of mortality from the following experience
with reference to any standard table which you consider to be suitable.

~ _ . Fa Ny
Age-group htip:}:id ¢ Deaths Age -group hé,p:issid | :Dtiz;ths I
: o . ANDH -
10-20 | 77 - 51-33 5891 O o
21-25 | 1472 5 5660 54358 63
26-30 5449 8 61-635 3997 iy
~31-35 808y 16 660 | W\IE‘SH D41
36—40 7739 19 71-75 Ta5r 8
4145 | FIII1 24 76-805) 71 o !
46-50 6237 37 B1-f5) ol
| SE— i —— . - i !

X
P
L >
W

R Y
5. Obtain graduated rates of mbftﬁlitx from the following expericace

by the formulas v dbr auhbzalg)org l(n\
+bgl2

of para, 7, using as the st}ndard tables the A 1924-2¢ and the A 1g24-29
Light tables. \\

| Agc -group P\ \L é)p?:ii Deaths | Age-group Et};p?iiid Peaths
oz} '5 | o
20\ 33 — 61-65 | 43244 1084
23257 bry 1 2 66-70 34,013 1349
(2630 5312 . 17 7173 22,237 1326
43135 13,811 | 31 70-8c . 12,516 1240
\‘”\ " 36-40 21,203 63 8185 5243 716
414§ 28,403 147 86-90 1,944 327
46-50 | 37014 ' 242 9193 415 70
51-55 . 42,78y | 442 96-100 78 16
| §6-60 | 45484 | 731 101- Ig 2
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6. The following data are derived from the Continuous Investigation
ito the Mortality of Assured Lives over the §-year period 1934—38:

Whole-Life with profit policies, Medical section.
Duration 3 and over

Ape-group ht};p roissi‘.(d Deuths | Age-group E;p;:]id Deaths
10-25 1o — 61-6z 47,151 1161
25-235 2,080 i 7 66—50 15,700 1390 &N\
26-30 | 1o961 ! 2t 7175 22,688 1344 |
5135 21898 | 47 | 7680 | rzs8y | 1246 )
36-40 2,033 82 81-85 5,244 713?;}\
41743 | 35514 I71 86-90 1944 | 327
#6-50 43,251 279 | 91-95 415 IaN 70
S35 48,681 | 503 96-100 78 Y 16
i 56-60 50,809 799 101— ' 1\ 2

o \0;
Taking the A 1924-29 table as a standard, usﬁ:%*aphic method to
graduate the values of \S
gl (observed)

Y

Tz (A\-.If?\rz\ﬂ'._cfgllf;zlibrary,org,jn

*d

7. Using the data of the previoué’(;ﬁestion, obtain graduated values of
¢ using the a{m) ult. table instead of the Argagzg.

Comment on the results, B{a&‘mg in mind (g) the relative smoothness,
and (b} the suitability as r‘ég\ards similarity of the experiences of the two
standard tables used. ()

N\
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CHAPTER VIII

GRADUATION BY A SUMMATION
FORMULA

1. Itis convenient in this chapter to regard any ungraduated value
u, as consisting of two parts, the true or universe value #, zu{j a
superimposed error «,,

"Thus 2, =t,+ . < \\\

<, may be positive or negative and although we shall fo\r the most
part consider crrors of sampling, the ¢'s will in praktice contain
inaccuracies as well, which will be deait with &¥the formulae in
exactly the same way as the sampling errors,\\v

An ideal graduation would of course gliginate all the €’s, but it
will be seen that the most that can be attdined by the use of a sum-
mation formula is a reduction of the)e’s and a smooth progression
of the graduated values. Although we shall concentrate much of
our attention“p\g“pg@,pggi@g:&fé/ggpgﬁrgmd smoothness, it should be
borne in mind that all the ushal tests of adherence to data should be
applied to the results of-any graduation. This is a point the import-
ance of which is sometimes overlooked because actuarial literature
on the subject oftSummation formulae tends to deal with methods
rather than regiilts.

&

2. Runpingaverages. Reduction of irregularities,

In\é\”ﬁéfy’sing a series of observations which show irregularitics
ipz"t%& form of ripples or undulations statisticians often tabulate

o~moving or “running’’ averages as 2 means of showing the general

“trend of the observations. By taking an average of, say, five con-

secutive values, the ripples are greatly reduced. This can best be
illustrated by a consideration of the series shown in Table XVIIL

The first column is a serics of values written down at random.
The next column gives moving averages, each of which is the
average of the corresponding value in the first column and the
values on either side. Thus the average of the first three iterns in the
first column is 4; this is written on the second line. Similarly, the
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average of the second, third and fourth is 3-66, and so on. These are
examples of moving averages as used by statisticians; it is usual,
however, to take the average of more than three terms, twelve
being a common number in connection with monthly observations.

Table XVIII

— - |
4 | !
I 4 ! ]
: 7 366 i 488
| 3 i 7 61 633 A\
i i1 | 766 8 ) 726 KN
o | ou 766 770 ()
8, 6 744 7'52%
I ! 7 _ 744 | 8a
P R AR " SR
13 R 8
___(_)___|__,___,__ A\ . !
~\\¢

We need not confine our method to thpﬁ‘giires in the first column,
and if we perform the same operatian ¢mythose in the second column
we obtain the values shown in the\third column. Similarly, the
last column can be derived fmmh@thmbﬂ‘}}ge srgegularities of the
first column have been greafly reduced by the averaging. It will
be seen later that this wouldhhave been more marked if the averages
had not always related o three values, e.g. if in detiving the third
column from the se\co\nd the average of four consccutive terms had
been taken, and.fh# average of two consecutive terms in arriving at

the fourth colafrn from the third.
£ t\ oo

N\

3. D'ng’rﬁ'on of smooth values.
ITable XIX the values shown in the first column have been
de‘ht with in a similar manner. The values in the second column
have been found by averaging each set of four consecutive values of
i, and here it will be noticed that they are not in alignment with the
values of u,. This is because the average of an even number of
values cannot be regarded as corresponding to either of the two
central values but to a hypothetical value lying between them.
Consequently the values in the second column correspond to values
between those in the first column. The third column is derived from

Froasii 12
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the second by averaging in fives and the values are in alignment
with those in the second column. IFinally, the values in the last
column are derived from those in the third by averaging six at a
time and arce therefore out of alignment with those values, i.e. they
arc back in alignment with the original values of #,,

Tabie XIX
; Average | Average | Average "I\

Y b of 4 terms uf jterms | of 6 terms \

Loy ! ¢ \,,\!’
N\
oty rofys | \ |
1028 1039°3 ] | - I
10015 991°5 {2 i
2 2 ;
332 953's | 9435 AN |
864 ggiﬁ ] 2?5’5 I i 838-;(? |
G0 275 : 735 N\l ~6H5-16 |

iz o \\d 7 ;
713 7493 T3%5L 652-16 i
b0 6615 631\5 i ! |
PO 563°3 xie's | |
435°5 \ L4505 :
404 e "..
281 3373 \ |
148 WWW. dbmﬁﬂar BL} "org in '
4 N
5 \ | ,'

)

These original valq@g}mre actually obtained from the expression
O\ t, = 1100+ 2x — 52

N\

by giving x the e.uccessne values 1, 2, 3, ... 1§, and were therefore
ideally smoothy The process of averaging has distorted thesc smooth
values qu(éc\dppremabl}, the difference in each case being 20-8%.
The ro}%ﬁn for this will he seen later, but the two examples have
shown"that by averaging successive values we tend (i) to reduce
.\Lr\gulantleq and fluctuations and, {ii) to distort values already
\émooth. We shall deal first with the second of these two features.

4. [r] or “summation »”.,

In Mathematics for Actuarial Students, Part n, pp. 114 ¢f seq.,
the operator [#] or ““summation #” is defined thus:

[n]uy= U o 4U gt

2

whether # is odd or even.

-5 '+u'a_a~:3+”n—1:
2 2 Z



“SUMMATION #” 179
If » is odd the central term is %y, and [#]#, is simply the sum of
n consecutive terms, the central one of which is u,.
Thus [5lue=1t_y+ 8y +tlg+ 1y +Up
If # is even the two middle terms are u_y and #y, and g, itself
does not appear. Nevertheless []u, still represents the sum of
n consecutive #'s with an equal number lying on each side of uy, e.g.
[0t =1_s 4 vty Fu_y Tty +thg Tty
In Table XIX the sccond column was obtained by thes

¢\

o] . . 3 o\
operation '-i], the next was obtained by the operation [3—] and(the
3 a3
.6 W)
last by the operation o] 1,

6’ S,
Gauss’s formula may be written v
1, =1ty = FAUy + P A2ty + {7+ DAy + (r f’f.‘\}}@) Aly_p+ ...

Also A=t (3 4 5)gy = (7 + S)agaye ¥ being theargument.

Henee A
i nt1 [ O8N
[] oy = | A~2a, 2 s r(;ﬁ,‘:’;‘g: rRdiprar g inAty

_ n,..-’_ [ N r

24\ T
6 m’\ trebt )

\ a

02— 1. n(n2—1){n*—9)
=1+ ._.(2.2 3{):5311 e s EPI Ay,

ignoring sixtl;\a.:r)'sf iligher differences.

1t is usyalMo write b for the operator A2E-1 and the above result
is then wiitten in the form
N - 2
. \¥/ [ﬁ'] [ 3 i1
— U, = —

3 1T — b
[

2_ 732 — .
(2 -1 9 e‘;-} Hyy  erees- (1)
’ 1920
on replacing w, by the more general symbol u,. T'his result is
important and should be memorized.

We see therefore that by taking the average of successive values

)
. , T . .
we intreduce distortions of ——- b, (the second difference error)
24

ang D -09) b2, (the fourth differcnce error).
1920
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5., Second and fourth difference errors.

Most of the well-known formulae for graduation by summation
involve three operators, often denoted by {/], [] and [#].

Since finite difference operators obey the ordinary laws of algebra
within certain well-defined limits:

[ [ [] = {1 L giz_f b Gl ;3};‘!:__5’) 52} .~

bnm
{I +m2— I EH—-(WZ_- I)(mz—g_} ?‘2] {

n?—1 - (n2—1) (?22\:—‘9)1)2},

T
24 20 T 142p
ignoring sixth and higher differences, A o3
Pty o ¥
=14 DL _:?5.{.)@2,‘}
24

where A is an algebraic function of E,{?r,\?; which can readily be
evaluated numerically in any givengage,
For the moment we shall igm’n{e't}ie fourth difference error and
deal only with the second tenp?iﬁz itk
www_dbr‘aufibl:ar;y.brg_in 24
In the example on p,a78, /, m and n were 4, 3 and 6.

bu,.

Hence i tni—g g4 _37
. 24 24 132’
Also bu, (1.5, ;)= ~ 10, third and higher orders of differences
A%

vanishing, ()
Heng:ﬁi;ﬁor all values of x the second difference error is — 352
Ih}s?’educes to —30-83, the actual distortion produced.

=\ B! Choice of operand,

With one important exception it may be said that formulae
used in practice introduce no second difference error. Even in
the exception which will be discussed later the second difference
error is small,

To eliminate the error we operate not on w, itself but on an
expression known as the operand; this operation will counter-

balance the second difference error introduced by the SUCCES51VE
suminations.



CHOICE OF OPERAND 181

For instance, for three summations {{], [m] and {] the operand
should reduce to a
[ B+mP+n’—3
- —— b,
| 24
ignoring fourth and higher differences.
'I'he result of the operations denoted by [{] [] [#)/imn on this

function will be

[loniln] |, _Bamitnt=3,1
lmn | 24 i .
L e [ Pemtentog) (O
VT Ji RS
=ty ’..:f N
ignoring fourth and higher differences. .\

Tt will be cvident that this gives an unlimited choleg of functions
which satisfy the criterion, and even if we rgsjtxiiet ourselves to
those which are practical and easily handled e iumber available

¢~ N/

will be considerable, \

The term operator is loosely ap‘gli?{d to the combination of
the [n] operators and the dividingpfactass a(l‘?'g-érf[%ggm] [1]/mn),
although the distinction betwecn aperator an oﬁéra is somewhat
arbitrary. The order in whi@ the opetations are effected is im-

)

material, ¢ &\J
3

Consider the operatdg = —-.
9N 125
Putting .-f:m;{'f‘;,\s'g we see that the second difference error in

the formula ig“35-
Hence jclkﬁf{erand must reduce o 1 —35.
Now\~f',"‘ (1—3b),=u;—3 (thyq — 2thy + Uy s)

M\‘; v = — i,y 7ty e

which may be written {1o[1]—3 (3]} ¥z
Thus the formula
[_5]3 _— }u ...... {2)
- {10 (1]-3 [3]) e :
IZ_‘)

will not introduce any second difference error. ‘
'Ihis is known as King’s form of Woolhouse’s fornrula and is of

historic interest.
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Alternatively, it will be found that the operand
Uyt Uy g U U Uy
also reduces to {1 —3bu,}, ignoring fourth and higher differences.
Writing this operand in the form 2 [3]—[5], we have the formula

[5)? (2[3] —[s]}
128 " A% e {3}
(ILigham’s formula}. A\
These formulae have the same operator and neither introduses
any second differcnce error; the second however is greatly supdrior
to the first in the way in which it cnables superimposcdigrrors to
.be dealt with. ) ("}‘;
We have secn that the operator [#] does not in}:({k{é first or third
differences: hence the operand must also exclddg them and must
therefore be of the form RN

Uy O (g Ftipa) + 6o (o8, )+
Le. terms equidistant from the centralvalue #, must have the same

coeflicient. o\
From Gauss’s formula N
www.dbraulibriryiorg. in?® (72 — 1
A ﬂ;—r _E Hy = ;ﬁz’s_j_'?h% 4t . 2__) f}?_} Upy  varees (_1_)

another result which §{hq\uld be memorized,

By means of thié\f@?ﬁlula it is a simple matter to find operands
which, when cofiibined with a given operator, will produce no
second differencé error.

The fo[ki%m g are examplcs of the use of both formulae.

Ex;\f%ré 1.

Eind a suitable operand to combine with B—] [s] Lﬁ—]
O 120
2 ¢ o 2 _
Now [ISI0] |, #° 54653,
120 24

=1+37, 6.

Hence the operand should reduce to {1 ~ 3,48} u,, which is rather an
awkward expression. If we are prepared to ignore the small distortion of
fgbu,, we obtain a much simpler formula.

Suppose that we decide to have an operand involving a1, 4 (0 #, 4 i€

of the form
Cotig e {ty, y +u, ) +e, (2, g +ag ).
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Tsing formula (4) this reduces to
(cg + 26, +26o} thy + (€1 + 465) bty +termS in $u_, etc.

If this is to reduce to (1 —3b) %, we have

g+ 20 +26,= 1}

€1t 48q =3
Solutions are co=6=1 and ¢=—1IL
We have therefore the formula

6 4
E#Ei[_] { — ity gt gt T _“a:+2}1 N\

41 (3116 \
or LG - 5pw, AS709)
120 \

{Hardy’s Friendly Socicty formula). LV

Although there is a slight second difference error hgts, this formula was
used very successfully for the purpose for which ?t vrgs devised and 1s the
best-known formula involving such an error. £ )

Alternatively, we could have written the upk}wwn operand in the form

(K, [} + K [3] + K [5]+ - .}u,”;,.‘tﬁa’K’s being constants,

If we decide to restrict its rawgaﬂ]iﬁvéﬂfmﬁg%ﬁg_iﬁmf ¢ [7] &, etc.)
we can use formula (1) to reduce, fﬁl}is to the form
(K, K3 (14 19) + Ky 5 (0 3t = (Kot 3K+ 5K + (Kot 5Ks) bty

If this is to reduce to {2[:7;\3 Bt u,, we have

N \}{1+3K3+5K5= I]

\“ K+ 5Ks =-3
giving as pm{sg'ib'ic solutions K, =0, Kz=2, Kz=—1, i.c. the operand
{2131 - [sli B as before.

Example 2.
/Find a suitable operand, involving terms #, 5

4\
\ofJerator [i]ﬁ[_I—ﬂ .

3
'T'his is perhaps the best-known example of a two-term operator,
As has been said previously, to achieve smooth results, operators
involving three summations Are usual, This two-term operator was

designed for a special purpose.

LSME 1 +§2_+_I3_2,j =1+85,
63 24

10 #,,45, fOr use with the
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The operand
Cotiz €4 (g q +thp ) H € Uy g Fr, ) 1oy (g + Hr5)

reduces to
(6ot 26 +2¢5 4+ 2¢5) 1, + (£, + 4¢3 +96,) b,

to third differences.
If this is equivalent to (1 — 88 u,, we have

Cot2¢) +200 + 20, = 1} £\
and €1 +405+0cq =-§]" A
¢\
Convenient integral solutions are G=€=1,6,=0, 5= —1, giuing the
formula A
4 ’¢‘
[511r3] , PN
-—6—5- 1T gt My Hey — H'x‘fi}:\ 441
[51[13] . v .
or R ORCRC TR cereed(6)
(Hardy’s “wave-cutting formula). *)

N\ V4
»

/
. N

TR Y
7. Calculation of fourth difference Error,
www dbraulibraryerg.in

Hitherto we have concentrgt@‘d“on the elimination of the second
difference error. It is, however, important to know what fourth
difference is introduced.,

¢ &) .

As an example welshall consider Spencer’s z1-term formula,
probably the most\famous and generally satisfactory of all sum-
mation formuled?;™

.‘\:"; [5}2 [7] o 7
=53 6 T 3 TR

Thg,@erand can also be written thus:

oY
"‘\; e/

“arid formula (4) of this chapter can be used to expand this in terms
of differences, We shall, however, use the formula

r ’ ’ r ’
{—u, 3+ gt 2uptu, —ul ),

2 a_ #_
M54H1_3+Q“D@_2y,
| 24 1620 f

ignoring B2, etc.; this formula would in any case have to be used
for the operator.,
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Substituting in (7) we have

U=t {1+ b+ {1+ 20+ 84 {1+ 3(1+ 1) F5(1+b+18%)
—7(x+2b+8%}u;

=111 420413004 L} (1 +2b+ BY {2 —8b 6% . }ug
={1—81p%n . ceeene(8)
Thus there is no second difference error, but a fourth difference
error of —BEAN
8. The range. '.\:\

The meaning of the “range” of a formula is almost self-evidefit
Briefly, though not strictly accurately, it may be said to (bé;;’tﬁe
numher of ungraduated «'s involved in the caleulation of7a'single
graduated value. T'he exception to this definition arises; if:}t 1s found
that some of the coefficients are zero when the formula is fully
expanded (see para. 10). For instance, the ran%o‘fs e expression

—uy gty Flyt “:1+1;T ”:H-*a
is seven, although only five terms are appa"rently involved.

"The range can be found easity as @ilowibEing dhe renge of the
operand by inspection and add lja'.i; m—1, n—1, ... etc. for the
operations [[][m] ] .... O

The following diagram’i‘l‘lﬁstrates the effect of the operator [5]
on a 7-term operand, ¢ach term being represented by a dot.

e N 7terms
A\ i
O
\:..\,, .o
’\’\ . -
et ... . . . . . . . . ttems

ﬁ‘hé first line represents the operand and each subsequent line
represents the effect of increasing the argument by 1. 'The total
therefore represents the effect of the operator [5] and it will be seen
that the original % terms have been increased to 11. The process
%s, of course, quite general and can be applied to several operators
n succession. )

Thus, in Spencer’s formula above, the range of the operand is 7.
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Hence the range of the formula =5+ 4+ 4+6=21 terms.

Similarly, the range of Hardy's ‘“‘wave-cutting” formula is
23 terms.

It is sometimes said that in using a summation formula one
assumes that the underlying true function is a polynomial of
the third degree. This is not correct. Nearly all these formulae
involve no second difference error, but they will involve a fourth
difference error unless the true values of the function beifls
graduated have negligible fourth differences over the range of malues
covered by a single application of the formula. "Uhus thé\ié of
Spencer’s 21-term formula does not imply that the funcgiar follows
a third-degree curve over its cntire range, but me?-ely that any
gn en set of 21 consecutive values can be represembd‘“ ith sufiicient
accuracy by a polynomial of the third degree. Adifferent polynomial
will usually be implied for each different sgtlof 21 terms.

It will be scen therefore that, otherltHings being equal, the
shorter the range of a formula the bc,ttér,xbccause

(1) it is easler to apply; Ny

(2) the asﬁﬂﬁtﬁ%ﬁ“l‘éﬁ%"b&ﬁfﬁw and higher differences are
negligible over the rarige is more likely to be accurate; and

{3) 2 smaller number ©f.ferms at the ends remain to be filled in
by other me @lsf

This last point’ty important and will be dealt with more fully in
a later sectiop,‘@or the time being it is sufficient to point out that
if a formula\has a range of #, the first graduated value pmduced

Lorres@nds to the =

*

L th ungraduated value, lmung 272 values

>

-2k 'Ehe beginning and u,lmllarly Z—7 yalues at the end to be filled in
by other methods.
. - 3
Thus in Table XVIII the operator B—_]' with a range of 7 left

3 terms blank at the beginning and end of the graduated values.
Similarly in Table XIX, where the range of the formula was 13,
only 3 graduated values could be obtained out of 1= 5.
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9. Effect of a summation formula on superimposed errors.

Hitherto we have considered only the way in which a summation
formula affects the underlying true values and we have seen that it
is a simple matter to ensure that, apart from the fourth difference
error, it will reproduce them without distortion.

The whole purpose of the graduation is to climinate the super-
imposed errors as far as possible. The tests now to be discussed deal
with this aspect of the problem.

A complete analysis of a formula includes an investigation of the
following features: ¢ \:\

(1) The range. . N
(z) The second ditference error. R
(3) The fourth difference error. Y
(4) The error-reducing power of the formula,
(5} Tts smoothing power. AN
{(6) Its “wave-cutting” properties. £ &
Of these, (1), (2) and (3), which de@ly¥ith the underlying true
valucs, have already been descrihed:,'“and (3) is probably the least
important. To investigate all't gipline illeeaijedgits necessary to

expand the formula. N

10. Expansion of a formula,
Any Smnmatign’, :fbnnula can be written
Kottt Kby + 1)+ Ko (s t6p0) + oo

O" VK, (4 1t)y)  (range odd)

Or A \’\\“ ! r
Kfuz s tu, )+ Ky (st thgt) ¥
O + Ky (@ T Y

in the simple forms

(range even).

N\ }Incidentally it is interesting to note that, although every summa-
: here are an infinite number of
hich cannot be derived from
rtheless be excellent for
d in the subject is referred

tion formula can be so expressed, t
formulae of the expanded type W
summation formulae. They may neve
graduation purposes and anyone infereste
to Dr Sheppard’s paper in J.I.4. Vol. XLVIIL o

Summation formulae owe their importance 10 the ease with
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which they can be applied, but with modern mechanical aids this
is not now as important as formerly.

The actual process of expansion can best be demonstrated by
examples. We shall first consider Spencer’s 15-term formula (not
to be confused with his 21-term formula given previously)

[5}£ H=31+6 3]+t ... (9;
The operand can be expressed as O
=3ty Jlpw F 4L L JuL_ — 30y . O\

This is the most convenient form for our purpose. The(tnethod
of detached coeflicients is almost always used and Cam,bglould be
taken to inscrt zero coefficients for missing termsn ‘the first
method of expansion demonstrated it is also 'tssnﬁ‘u,d that there
are zero coefficients at each cnd of the operand The work is best

set out in tabular form as follows: 7,
" N
I . Op.erator (5] '_Operat‘or;&t.] . Operator [4] !
Cl:c)cﬁimen'és applied to apphied to applied to
of operan previous column pr;e’vmus cqumn I previous column
(1) www.dbiza)ulibral ¥uOT g i) ( )
L -
. N\ O
o N\, o 3 ! -6
2 O g B -3
“: p— 3
4 o : 21
AR 4 15 46
R\ X 7 o 07
Ny 4 4 23 74
QY 3 7 15 67
c
i -3 4 3 46
e} o L 21
o] —3 3
o o -3 -5
-3
o o —b6
i 8]
- N
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ITence the expanded formula is
530 {7400+ 07 (30 + )+ 46 (Wia + )
+ 21 (g +g_g) + 3 (Mgt e — 5 (a5 H iz s)
— 6 (et 10l )= 3 (Maya U )y
where 1 as before represents the ungraduated value (=u;+e¢,in
the previcus notation).

Tt will be seen that in effect the formula has been applied to 1
with the important proviso that an unlimited number of noughts
could be assumed at cither end. Inapplying the formula to observed,
data it is not of course possible to make this assumption, so that”
we finish with far fewer terms than we started. The assuzpp:t‘ioh of
zero coefficicnts at each end in the above table has l;h'{e.effect of
apparently increasing the number of terms. \

In actual practice it would not be necessary te gbtain the final
column below the entry 74 or at any rate the&e ond 67, since the
coefficicnts then repeat in reverse order:.'f.he previous columns
could have been abbreviated accordinglys.)

N

11. Alternative method, Y . .
To illustrate another méﬂ?ﬁd{éﬁﬁ'@ﬂﬁhmemﬁgalﬁhau consider
Woolhouse's formula A

s IS
Mi{f%uil N T % Tt (10}
This formula is nowehiefly of historic interest. ’
First we develofithe operator as follows, writing coefficients only:
[5] gi\’f&}“' 1,1,1,1,1,
[ -3:‘\;" I, 2, 334: 5! 4'1 3’2!1!
&P, 1,36 10, 15, 18,19, 18,15, 10, 6, 3, 1.
_Each' fine is derived from the previous one by summing, Very
faugh as in the previous example.

We now have to incorporate
which are —1, 7, =3, as follows:

the operand, the coefficients of

ng-:stor- . 3 6 1 13 18 g 18 13 IO...I

— _— PR _—__‘_.—-—"_-_-_‘__”_'_ )
—3 -3 —g —18 —30 —45 —54 57 —54 —45 —39%.
.; T3 g 21 42 70 105 126 133 126 I05.. ‘

-3 _3 —g —18 —30 —45 —54 57 ~3t- }

_T:tal_ _—3. -2 o] 3 7 21 z4 25 24 2L,
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The terms repeat in the reverse order after the cocfficient 25 and
need not be written down.

The expanded formula is therefore

yhs i 37— 2y g 3y ot Ty g F2TH, o+ 2410

+ 25wt 24up b

12, Analysis of an expanded formula.

It has been stated previously that formulae of the type

u=K_yu, o+ K qu, + Ky, + Kyl + K., \

can be constructed so as to prodoce a satisfactory grad{ﬁtmn
though they cannot be arrived at by summations. I’his “Scetion
applies to these formulae as well as to surmmation iormulaa

A great deal can be learnt merely from the 1‘%}&.(11011 of the
expanded formula without the calculation d{Niny indices of
smoothing power etc. N %

The range, for instance, is found by c()ﬂ%MEring the first and last
terms, so that in the examples of paras.(fe'and 11 the range is 151in
each case. R\

13. 'The coefficidiit ¢dbyay!ibratysorg in

Animportant conceptiondn connection with an expanded formula
is the curve of coefficiepiey Or coefficient curve as it is sometimes
called, This is obtdi@&d by plotting graphically the coeflicients
K_,...K,...K, andNoining them by a smooth curve of which the
following are ty.pii':’a“l.

()

el —

\\ Jhe general charactetistics are that the curve is symmetrical,
rises to a peak in the middle, cuts the axis towards each end and
thereafter lies below it.

'I'he sum of the coefficients must be unity, so that they will tend
to be mainly positive proper fractions with a few negative oncs.

Remembering also that u) ,+u/,, gives a second difference
term of #?buy (ie, r2A%; ), it follows that for zero second
difference errar © K =o.
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Hence some of the K’s must be negative, and in order to counteract
the predominating positive K’s, they must occur for the higher
values of #; i.e. the negative coefficients will occur at the ends of
the coeflicient curve where they are weighted with the largest
values of 7. 'I'his is not a rigid demonstration; it is a discussion of
the gereral form of the coefficient curve, Unusual formulac may
prove exceptions,

From an cxamination of the run of the coefficients (the coefficient
curve is 1ot actually drawn in practice) it is possible to form an idea
of how the formula will smooth the superimposed errors and also of ),
its wave-cutting power. Tor clearness we shall deal with numetieal -
examples; the reasoning is, however, quite general. .

Consider first Woolhouse’s formula:

793
4 %

$*Z 2
\.
I NS

! f
€= iy { — 36a_r— 265 g+ 36 4T Ten gt 2160y a
+24¢, 1+ 2589 24600 s
where ¢/ is the error superimposed on the e value u,, thus
giving the observed value u.; ¢, is the gradugted error thrown up
by the use of the formula, ignoring any distortion of the #'s such
as fourth difference errors. wwwdbraulibrary org.in
Consider a particular observedgltie

1y + e

This error €, will first app'g‘”;a\r on the extreme right of the formula
giving the graduated erfor €10- Subsequently it will appear il &,
Sigs -0, LiSIDG tO masmum importance in ¢y, € and €55 and finally
disappearing from e formula after ey, has been calculated.

Similar r Lm@ﬁ?s apply to the other errors, and it will be seen that
any gi‘ﬂdl:léi*éd'error ¢, differs from the previous graduated error
Ca—1 fOlj:the following reasons:

(1) Efc_s has disappeared and ¢, has appeared for the first .time.

} €l to ¢, inclusive now appear with different coefhcients,

having “moved up” one; thus every coefficient K, has been changed
to K ..
(1) is only a special case of (2) if we imagine zero coefficients at
each end.

Tt follows therefore that if the coefficient curve is smooth, ie. if
the successive coefficients X change only gradually, the graduated
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errors ¢, will themselves change only gradually however irregula:
the ungraduated errors ¢ muy be. Since the underlying “true’
values are supposed to be smooth it follows that a formula whick
when expanded has a smooth run of coefficients will produce
smoothly progressing graduated values.

The coefficients — 3, —2, 0, 3, 7, 21, 24, 25, 24, ... which we have
been considering do not progress smaoothly except at the gentre
and it is not surprising therefore that Woolhouse's form;la is
unsatisfactory from the point of view of smoothness. ¢ O

'\
N

14, Wave-cutting, (»’.’;’

We can also learn something from the s}@ié of the coefficien
curve quite apart from its regular or irregulafprogression, _

In the diagrams on p. 190, the first cur¥g'rises steeply to a narrov
peak, while the second rises very gr ddaily to a broad flat top. Th
use of a formula represented b}-"tl{é:*%irst curve will mean that any
particular ungraduated error will’have a marked influence on the
graduated values close to ,rtbut very little effect on the others
A formula t};ﬁ@ﬁgdbbguﬁhg:}p%;gm%_ﬁgwe will spread the effect ove:
a wide field. Any given ¢/ will have only moderate influenc
on ¢, and values:nxﬁﬁr it, and appreciable effect on more distan
values. (™

Since the™s”’s are random errors they will tend to change sigs
frequenjck\r;’al'though sometimes a run of several consecutive error
of the/same sign may arise. An ideal graduation would eliminat
thef Yeompletely; a summation formula gives them full weigh
although it spreads them over a larger range of values. A formul

Swith a coefficient curve of the first type will tend to localize the effec
of the errors and a wave in the ungraduated errors will be repeate:

although to a less extent in the graduated values.

If, however, the coefficient curve is of the second type an
graduated value depends to a larger extent on the more distan
values and far less on the near ones. Consequently, a wave in th
ungraduated errors will begin to have an appreciable effect on th
graduated values much earlier than with the other type of formul
and will continue to have an appreciable effect much later, while it
maximum importance, corresponding to the peak of the cocfficien
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curve, will be greatly reduced. Such a formula is therefore said to
be a good wave-cutter.

Woolhouse's formula has coefficients:

sbs{=3, =2, 0,3, 7> 21, 24, 25, 24, b

and because of the marked peak is a very poor wave-cutter.

Tlardy developed a special formula, given on p. 184, known
as his “wave-cutting” formula, to distinguish it from his Friendly
Society formula (p. 183, formula {5)).

"The coefficients of the expanded “ wave-cutting” formuta are:

'61'.-‘{{'_19 -2, —2, — 1, I, 4y 6: 7: 7} 6! 5) 5#‘3 5! 6; } 7 AN
The centre coefficient is marked with an asterisk and it will be

noticed that the coefficient curve actually has 2 trough ingtead of
the usual peak and the central cleven coefficients arc all 3’6 or 7.
This formula is efficient therefore in dealing with [ong ‘waves. *

The action of a summation formula in this regpeet is similar to
that of a roller on uneven ground; the localir eglarities are almost
entirely removed by flattening out ridges apd filling up troughs with
earth taken from those ridges, while more’extensive mounds and
hollows are reduced but not &l\im@af“ﬁd;u“ brary org.in

™\
3

15, Wave-cutting index.

We now come to the caleilition of certain well-known indices or
“coefficients”, as the dre usually called, The use of the word
“coefficient” in thighconnection seems misleading and it 1s pro-
posed therefore tolise the word “index” in this book.

The wave-cdsting index is defined as the sum of the ﬁ@elccntral
Coefﬁcients\:“j’ﬁis is somewhat arbitrary and breaks dewn if t.here
is an ey:eg}umber of terms; in this case the sum of the four middle
coeffielents and the next one at either end is taken.

'"T"h'e’ rationale is clear from the preceding section, for if the sum
iéargc the cocfficient cutve is sharply peaked and the effect of tbe
ungraduated errors is localized (unsatisfactory wave-cutter), while
if the sum is small the curve is flat topped and the effect of the
ungraduated errors is widely spread (good W‘We'cut,ter)'

The wave-cutting index of Woolhouse’s formula 18 115—=02.

* Vaughan has pointed out that this formula, ?vhcn applied to short waves,
may actually “reverse” them because of the high shoulders of the trough

referred to in this paragraph.

I
FMAS I 3

Q"
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'The wave-cutting index of Hardy's “‘wave-catting” formula is

B ‘42_

Asagencral rule it may be said thata combination of two operators,
one of short and the other of long range, will deal effectively with

waves,

ola
ey

16. Error-reducing power.

Clearly one of the most important functions of 2 summation
formula is to reduce the superimposed crrors ¢’. The expanded
formula however does not itself give the rcquired informatiof, A

Consider, for instance, O

€= Kye, +1\1(€:c 1€ )t K, ( €5l €’L|‘9)

Weare not interested in a particular set of ¢’s s and tlsc resulting €,
but rather in the results obtained on the aver: agadf Lhe formula were
applied very many times in similar circumstandes. In considering
a large number of values of €, €., etc.\\&e are faced with the
difficulty that some will be positive and{gbme negative. 'I'he only
satisfactory way of overcoming thisy d1fhcult} is to deal with the
root~mean-square deviatic Fa?,l& $ ,;gig{]rd deviation of each super-
imposed error,

We imagine a large I'lU.Ih]'.zLI' Ot observations made under similar
conditions, thus pr oaucmga whole series of values of ¢ at each age
for which we can thel\@{i}culatc the standard deviations, taking each
age separately.

Denote the qt’tgd"lrd deviation of the various values of € by S,
the standard dgwagtion of the various values of ¢/ €. by S, andsoon.

By the ag‘”phcatlon of the formula we can calculate the graduated
EITors ¢f ar d their standard deviation S, for each age.

It rcmamb to find a relationship between S, and the various S”s.
\'«We have shown in Chapter 111 that if

E=X4yri+...,

o2= o2+ r:r;‘:‘, -+ r:% -

(if the variables x, v, #, etc, are mdependent, i.e. not corrclated).
By a simple extension it follows that if

F=Kx+Kyy+&,t+ ...,

o;=Kjo2 + KiaZ+ K203 +
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To show this we merely have to take Kox as a new variable X,
K,y as a new variable Y, and so on, and as this is equivaient to
altering the scale it follows that the standard deviation of X 18 Kyoy,
and so on. 'The result then follows, and we deduce as a special
case that

Sffs=KﬁS;2+K§(S;2_1+S;?r])—ng(S;?_g%-S;E__E)—I-

If cach S' is based on a very large number of ¢'s the values in-
volved in a single application of formula (1) should not differ
greatly, and if we assume them all equal to S we find that O\

S2=S'2{K§+2K‘§+2K§+...}. cee {12) ’
ITence the formula will on the average reduce the sugeﬁinposed
crrors in the ratio _ R R4 4
§,—~«/K3+2K%+2K3+.... § \ ...... {13)

The right-hand side is known as the efrp:f,—‘&ducing coefilcient
or index. ‘,":\ .
In the more general type of formula “agt derived by summation),
in which coefficients equidistant-fr.egfgrthe_ centre are not equal, the
i e oS T A BTG et T
same argument applies, but the erEor-Teauts %
(K2, + K2tk >+ R+ K K

ie, the root-mean—squs,taé"a}f the coefficients. (K_, 1s not necessarily

equal to K,.) . N\ )
'Yhe smaller thé. error-reducing index the more powerful the
formula. O\

For '\’\-"gqlil\oﬁse’s formula: _
' Errox&ﬁéing index—= s {2(3?+ 22432+ 7+ 2 12+ 243+ 255
aS‘ttl:f::'t:entral coefficient does Dot occur twice
A\ =+423, (unsatisfactory.)

) 3

For Hardy’s « yave-cutting” formula:
N rrorr P T RN T i de 5t

a1
T Ga

=-333.

{Quite satisfactory, considering the range of 23 terms.)
132
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17. Smoothing power,

This may at first scem synonymous with error-reducing power,
since errors which are brought closer to zero will tend to progress
more smoothly. The error-reducing index depends only on the
size of the coeflicients, not on their order, and the formula operates
by grouping together errors of opposite sign, which tend to cancel
out. When we come to consider the smocthness of the graduated
results, the order of the coeflicients and the coeflicient curve 15ohne
of great importance. As we have seen, the ungraduatddyerrors
“move up one” each time the formula is applied to givCsuccessive
graduated values; i.e. each ungraduated error is myi{ipiied in tarn
by each of the K’s. Provided that these progresyBmiotthly, so will
the graduated values, and this effect is indepcnd(:}it of any reduction
in the crrors, \

The obvious way of testing smoothncs’.&fs’ to consider the various
orders of differences. It has become"cérfx}cntional to take the third
order of differences in calculating dshnoothing index. ‘I'his choice is
arbitrary, but, as will be seen ddter, it has one important practical
advantage ianb@;dmﬁq@:gﬂﬁ@%\jm formulae have an operator
consisting of three summations,

As before, we are cgncerned not with a particular set of exrors but
with the result of a'great many applications, We thercfore consider
not the €'s but ‘t}&‘ standard deviations .S”, which for convenience
we shall again assume to be equal.

The gem{;r\al algebraical discussion is rather involved and we can
best illustfate the argument by a numerical example, using Wool-
hqg&@ formula

e 1 ' _ i I '
N T TEE LT 367 T 26 g+ 36, 4 T 7, 5

+21el 246l F25el )

To find A%, the third difference of the right-hand side, we
remember that A% = (E— 1)*= E% ~ 32 3 F — 1. Writing coeflicients
only we arrange the work as shown on p. 1¢7:

"The denominator 125 is introduced only in the last line, and
although the whole formula has been developed for the purpose of
illustration, it is not necessary to go beyond half-way, as coefficients
then are repeated in reverse order but with changed signs.
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i -3 —z Q 3 " 21 24 25 24
_.3| 9 6 o] —g —2I —-()3 —nz =75
3 -9 —6 a 9 21 61 72
Ik 3 2 o -3 =57 —2I
A 3{ -3 7 -3 ©o o 9 -2 9 °

. 21 7 3 o -2 -3

! —72 —63 —21 -9 0 6 0

75 72 T 63 21 ] o -6 -9

i —24 —2§ =24 —2l -7 =3 o 2 3

ﬁal. o —g 21  —9 o o 3 =7 '31\'

It we assume a standard deviation of the errors at each age éqﬁa]
to &, the standard deviation of the third difference errar will be
w'\ &
f;*"32+72+32+o“-+---+32+?2+3§,*'
5
. p, \"’
or, since each coefficient is repeated (there bginé no central term),
s O
125 '
the summation stopping at theGdtsaulibrary.org in
'The argument is perfectly geheral; we first of all expand the
formula in the usual \v;y\”and then find the coefficients of M,
expressed in terms ofd éungraduated errors.
The standard degiation of AP, is then

S w’lgﬁ_of_tlﬁ?qﬁaﬁﬁﬂh_é coefficicnts.

T

T )

A\ I Lt ’ ’ 7
Now x'\ A3€;a:"€:c+3'_'359':4-2"1-3€x+1 Ex-

7\
Hencg\\eﬁ'the same assumption as before, the standard deviation

of the: an graduated error is

N” [ ——
) § i gt =820,
The graduation has therefore reduced the standard deviation of
the third difference of the errors in the ratio

[ Y-y
sum of the squares of the coefficients
-———-—————Eo—f——-——-, ...... (14)

where the coefficients referred to are those in the expansion of A®e

in terms of the ungraduated €”’s.
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In the above example the smoothing index is

e N/z GH745i o2+ o) =@= ‘0655 or L Approx.
123 20 125 15

Having regard to modern formulae this cannot be considered
satisfactory; it should, however, be remembered that the range is
only 15 terms and that the formula was onc of the earlicst ever
constructed. £\

Although the assumption made in this and the preceding section
that the standard deviations of the errors are all equal is ngthikely
to be realized in practice, the crror-reducing indexand the swicothing
index will still provide useful relative measures for ogittparing two

or more formulae, &

18. Second and fourth difference errors, \\

When the formula has already bemyéxfizmded, the second and
fourth difference errors can conveniegtly be found by the following
method, ™

From mos%ga‘ma&qgﬂﬂq@jﬁentral difference formulae it
follows that R

u:r—r + I‘::.:':-i—:«' == 23&;@" TBA?“;-_-]_ i I—Z- - 12\4315;_2 T e
)
2 (42
rAfri— 1)
;g=lz+f235+—--—( : '!;3+...}u;. ...... [15)

3

Ilence P\ %
Koug,+ KL@}—l o) T K (g s+t 0) + o+ K (e uil,)

,\“’: j # -2
O = {K0+ 2K, 4+ 05K, 4
N @ 1

g

?‘2_1) r] .!
K.
1z e

"\t should be remembered that we are now concerned with the
\mderlying true values #, and not with the superimposed errors €,
although the coefficients are the same.
Owing to the construction of the formula
Ko+2(K + K+ R =1
"The second difference error is

XK, bu!, eern(16)
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The fourth difference error is

2 (2
E%;i)f{,bﬂu;, ceren(17)
where the summations extend from the central term of the expanded
formula to either end and not over the entire range, so that each
coefficient X occurs once only.
{f there is no second difference error we have 572K, =0 and the
expression for the fourth difference error reduces to

3
LT
v KBl e (I8N
r B
1z ' Py

For numerical work it will often be found that the mqr;e;.‘g\éneral
expression (17) is preferable, as F2(r2—1) is always d’i\'jistibl'é by 12.
An cxample of the use of this method will be given Tater.

16. Alternative method of finding the sm'qt')Qai‘ng index.

If only the second and fourth differensgerrors and the smoothing
index are required it is unnecessary to éxpand the formuta.

The two errors can be found by'the method described in para.
5, 6 and 7, while the smoothiﬁgiﬁ’d@hlmﬂibt{eyné@&the following
very elegant method which alss throws considerable light on the
construction of summatigh formulae. The method is due to G.J.
Lidstone, who des fi.@cd it in two papers to be found in J.1.4.
Vols. xu1, pp. 348‘:}t seq. and XLII, pp- 106 et seg. Both these
should be reaci’ %e classic examples of actuarial literature and
because of‘,f\ﬂc‘ masterly analysis of summation formulae which

they contai

"\ a—1 _n=3 =3  n-l
O pgeE T eE T BT AET
'“s:'\‘.. _TI:];
vV =F ° {1+E+E2+...+Eﬂ-—1}
E_n—?: ...... (19)
AE

Hence a typical formula involving three summations in the

operator, say, U_] Lﬂﬂ E] foperan 4,
imn

Q)
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may be written
E =) En 1) ()

Hml-h—3

ImnASE 2
To find the smoothing index we find the third difference; i.e. we
operate on the formula with A3 giving

(B~ 1) (Em— ) (ko

Lrmino3

ImnE 2 .

As the operator in the denominator affects merely the syffiand
not the coefficient of cach term it can be ignored. We are {eft with

ad

I \ , ) <N
E‘m_ {_&Hm—,-n — Fmrn_ EvH__ Fiim o El_f-_ Em + Fn _~Iﬂ( {Op erand?,
7L &

N (21)

It should be pointed out in passing that the ptactice of taking the
third order of differences means that a ':Q}}EI‘G.’EOI_‘ involving three
summations can be dealt with very eagily) ‘If only two summations .
are involved (e.g. Hardy’s “wave-cutehg” formula) it is easier to
find the coefficients of A2 by tllej«;iibthod and then difference the
result so as togwim.dhend@ﬁai@r@é'&gffnﬂ.

From the above expression (21} itis a simple matter to evaluate
the necessary coefficientd of A% in terms of the «s. Tt should be
berne in mind tha&'{iﬁ..t’he second half of the expansion the co-
efficients are repgatéd in reverse order but with changed signs.
If the range of\'thé formula is R the number of terms in A% is

{operand).

D {operand}. ..., (z0) \

O R43
R+ 3 (usually*an even number), so that only the first - :‘3 need
N\
be evglﬁ}t“ed if R is odd, or the first }%-_i if R is even,

. The following example illustrates the method:

N\

) 3
Example 3,

Find the second and fourth difference errors and the smoothing index
of Spencer's 21-term formula
[51*[7]
o T4 5] - [ e
All the required information can be obtained without expanding the
formula.
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Tt was shown on p. 185 that this formula has no second difference error
but a fourth difference error of —52b%u,.
To find the smoothing index we proceed as follows:

AR L [5)°[7] {11+ [3]+[5] — (7]} e
350

gl g aul g — )

3502\.‘*}”
Writing only coefficients of the operand so that E? in the denominator {1\
can be ignored we obtain: ) A o
¢\
sig{EV —2ER_EW04 BT 42— 1){~1,0,1,2, 1,0, — LSNP N
N
R+3 .
The cxpansion can be carried out as follows, evaluating onljf ——&— Le.
12 terms: ~."‘.\\
7 . -1 01 2 1 0 -I N
~zf1z z o -z —4lF2 © 2
— E1o o —2z =1
o ) -1 0
_ ’.:" ..........................
Thaees | ............................ ww‘w *d_bra‘u'llbféf BY e
—— o N — yOrgI
Total | -1 0 1 2 1 2 =21 -1 —4 —3 =—3 oo
AN
- e \J fir s. The
The term in E5 and e €onstant do not affect the first 1z terms,

sum of the squares pfthe coefficients
N , 96
S50 i6x1%42x% 2t 42 x 3247 = -
{ ’\350— 350
f”\," B _ 1 .
o - . i
Henp{\\(hc smoothing index =Ly 35 = 00020 of y&y APPTOX-
)
“Example 4,
Analyse fully Spencer's 21-term formula.
For a full analysis it is necessary to expan
done as follows, remembering that only the
needed:

d the formula. This can he
st eleven coefficients arc

[5] gives 1, 1, 1, I, I,
[52 gives1, 2,3 4 5 4 3 > D
[51*[7] gives 1, 3, 6, 10, 15, 10, 22 23 2% 1g, 15 .on
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Since the coefficients of the operand are —-1,0, 1, 2, 1, ¢, — 1,
we have
~1|-1 -3 -6 —10 —15 —1g —22 —23 ~22 ~I9 —1% ...
[ 1 3 6 10 15 19 22 23 2z ..
2 2 6 12 20 130 38 44 46 ...
1 1 3 6 10 15 19 =22 ..
-1 -1 -3 -6 —10 —15
Total|—1 —3 -5 —35 —2 6 18 33 47 57 <0\
Oy

As a check on the accuracy of the work we have: \
‘t‘4;“‘5;)+6 Q=350
so that the sum of the coefficients is unity, as it shonld be.

Note: aIthough the denominator of 350 in thci&rﬁiula is left out of
account in much of the numerical work it shouldwicver be overlocked.

Range. The range is 21 terms, WV

Coefficient curve. The coefficients pre q& quite smoothly and the
peak of the curve is faifly broad, “e S“fould therefore expect good
smoothing power and fair wave- cuttmg Properties, in splt(, of the fact
that the range of the operators is 5,’5'"a11d 7, while for good wave-cutting
the ranges should differ T wi ly. ol

The second And tourth d d%;:are% &8¢ fbrs and the error-reclucing index
can couv cnlently be calculated at the same time as follows, where X, has

sum of the last line=2(—-1-3—5—..

its usual meaning as a cdefiicient in the expanded formula.

€3
#\.J
W,

: XN -
rolasely | rxgsek, T Tgser | (gseRy
RIS W ! ©
Iq\x"r\— 1 - 100 — 823 | 1
g/ —3 - 243 — 1620 9
N8 | -3 ~320 - 1680 25
A A R A B — 980 25
~\J 6 —2 - 92 _ - 2I0 4
Ol I I
4. 1 18 288 360 324
-l. 3 33 297 198 | 1089
- 47 188 47 2209
P 57 57. — i 3249
o 6o — — | 3600
"Total | L —080+g8c | —53I5+g05 . 3600+ 097t
; =0 =—4410
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2.
Column (4) was derived from (3) by multiplying by 1}--2—1, as this

reduces the numbers involved. Since 2K, =0, we could however have
calcutated T#'K, to arrive at the fourth difference error (see formula 18). -

Sceond difference ervor. This is equal to 2#°K, =o.

2(y? 1
. . Coa ri(rt—1 y
Fourth difference ervor. This Is given by E——(— . )K, or by ZEKT
1
if K, is zero,
From column {4) the fourth difference error
N
10 oA
N g b, = — S35, as before. A
350 \

It should be remembered, that in finding the second anid fourth
difference errors by this mcthod, the summations extend oyer only half
the whole range, i.e. from the centre to either end. THisydoes not apply
to any other index,

%

. D [2cbo7itgoo

Error-reducing index. v ZK? over the wholetapge= [ — (330
Note: the total of the last column is shdwn in two parts, since the

square of the central coefficient (r = ) ods not necd to be doubled.

. swagw.db v g e
Error-reducmga‘fi ex =3—?,%U\ Y 5;1%(}558-“

Wave-cutting index. "Uhedum of the five central coefficients is 288, or
about 466, indicating oq}y?very moderate wave-cutting power. (Cf. 42
for Hardy’s “wave-cmég’g’” formula.)

Smoothing indesx, Since AS=E8—3E2+3E—1, we find the coefficients
of A% as folloWwAwriting only the first twelve values and ignoring the
denominato¢af3 50,

2N\

B | aply_s—s 2 6 18 33 47 57 60 7.
—313%"'i 3 g 1§ 1§ 6 —18 —54 —09 —I4L — 171 —180...

35{.." -3 —g =18 —I5 —6 183 54 00 I4T I7T..
= 3 ? 3 ; s 2 -6 —18 —33 —47 ..
$Y- -t
Total -1 o 1 2 1 2 —t —1 —4 73 -3 Lae

Hence the sum of the squares of the coefficients of Ade
6
- 2 a ] 5 2 + £ :_9_.__
- 3502{6>< 1242 x 28 +2% 30+ 4% 150"
The smoothing index is therefore oig V25 as before
=-00b26 oOr gy WPProX
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20. Choice of the operators [[], ], [#].
The smoothing index is

V'sum of squares of cocllicients + o,
Hence for the formula

[ {m] ]
3 3 1
— 1operand]
bin V7 g
the smoothing index will have the product /mn in the denomingter.
Foragiven operand and a given range the sum (- w4 0 s {ized,8ince
€ N\
range =range of operand+ /Ly + 5 _ 3 (sew ]1.;:;51\ 8
We can increase the product /mn by makine thiesictors more
nearly equal, and it might at first seem that tiy u-.u.a\s{’c-fﬁcicnt formula
would be obtained by making O

I=m=p, x\\

Although this tends to improve the cfi;(i‘f-rcducing nower it tends
to impair the smoothing power and the same applies if two only of
the values /, m, # are made cqualel «

To prove this we considexjvéifrcssion (z1), which can be used
in finding thie s e 54 smaller the coeflicients found
by expanding this expression the better the smoothing power,

especially when it iscrémembered that the cocfficients have to be
squared in finding $he index,
Now the opegator

E{I—'?ll-lln__Em.'—ﬂ —~Entl _ prlim +EpEmy oy
will hayf\’l}rlit coeflicients if /, m and 5 are uncqual. If, however,
two of\thém (say m a : i .
?ﬁ‘& (say m and n) are cqual it reduces to
™ EJ—I—2m___E2m__ 2 fitn < EI+ o fom 1,

4 .\'~ 3
\which tends to produce

greater coeflicicnts when combined with:
the operand,

If I=m=n it becomes E¥—apu, o 1, so that the coeflicients
in the expanded formuls

coeflicients 3 which are sy
that Z, 22 and # should be

will be rclatively large because of the
bsequently squared. It follows thereforlﬂ
nearly equal. [4]151[6] as used in Hardy's
a is therefore a good operator.

Vaughan has pointed oyt that the result is further improved if
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{+m=n, since then the terms — E¥m™and E* cancel, leaviﬁg -only
six terms 11 the product.

He has devised some very interesting formulae on these lines and
the reader is strongly advised to consult two papers which he read
to the Institute (reproduced in J.I.A. Vols. Lx1v, p. 428 and
LXVI, p. 403). ’ _

Onc objection to formulae in which /4m == is that cither one or
all of the summations must be even; the effect of this is discussed
in the nest section. X

A further point clearly brought out by Mr Vaughan’s work is Eli&{\
a good operator and a good operand do not necessarily combing to
produce a good formula; it is in fact impossible to prédist how
they will blend. There is no really satisfactory meth¢diof judging
the efficacy of a formula except by analysing it fully'as explained in
previous scetions. As regards its application toa particular experi-
ence the best test is the examination of the xesults that it produces.

NN

21. Even summations. \ WV
As previously explained the rqurii ‘of a summation of an even
number of terms is to produclﬂ‘:eijré'ihl‘hiljlihgan}idiﬁ;@ﬁrfJﬁtweﬁn the
two central ones, A secondaevén summation brings the resulting
values back into alignmggtgand hence a formula involving, say, the
operators {4} [3][6] p\ddﬂccs values for integral ar.guments. if, for
instance, we operate, on crude values of g, for integral ages the
graduated valae& will also relate to integral ages. QOccasionally,
however, it mé.;r'be an advantage to have one or three even sum-
-mationsyfob ‘example we can then make [+m=mn, as mf%ntlﬂﬁeﬁ
31)0\«'6,;1‘1’% if we are operating on values for ‘‘ages last blr‘thday
thg.f};}}nula will automatically produce values for exact integral
\”ﬂ%ifsf provided that it can be assumed that on the average
exact age =age last birthday + - .
One important disadvantage of even summations i.n‘general 18
that the coefficients tend to be more complicated and it is therefore
difficult to eliminate a second difference exror. .
It will be remembered that the second difference error in [n]u, 18

nw 1) bu,. Now if n is odd, n — 1 and 7+ X at€ both even and one
24 = .
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is 2 multiple of 4. Moreover, one of the consecutive numbers 7 -1,

nin?—1),

n, n-+ 1 must be divisible by 3, so that the expression isan

integer, If # is even the numerator may only be divisible by 6, 50
that awkward fraciions arise. In order to produce a convenient
working formula it may be necessary to introduce a small second
difference error. For instance, using the operators [4] [5][6], Hardy
produced the formula N\
: I A
S 6 by - s, e

'\
\

which has a second difference error of $;A%;_, or {‘Hb%',
Actually a small positive second difference erroy fiay be an advan-
tage, because the fourth difference error is alsays negative and the
two tend to offset each other, Spencer in fz\ctdex’ised a formula for
which the sccond and fourth difference €rpors would cancel in this
way if the function operated on were,e'f}he form A+ Hx+ BC*
It is impossible to ensure that this’will occur in general; much
depends on the particular fungti"o’ﬁ"under investigation.
if we considey ¥HPLRHERRwErFe we can see casily why the
fourth difference error isaliiys negative. The negative values occur
at cach end where thé values of # (in our previous notation} are
greatest {sec paraf 1@‘}’
This ensures, tl;}t 2K, shall approximate to zero, thus produc-
ing little 9{ o second difference error, but making 2 ?—J(T—:;—I) K,
negat@\é‘.’ince weighting with 74 gives the negative values of K,
greaf importance.
o N
AN )29, Maximum smoothing power and maximum error-reducing
power are mutually exclusive.

It is obvious that any formula which reduces the errors effectively
will automatically produce smooth results, If a formula is devised
s0 as to have the maximum error-reducing power for its range it will
always be possible to construct a formula of the same range with
greater smoothing power. The first concentrates on eliminating
the errors; the second on smoothing them.
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Consider, for instance, the formula

[P, B .

123 (rtty+ y (e H ) + 2 (1o H o))

where x, v and z are to be determined so as to produce no second
difference crror and the minimum smoothing index.

"y .. . (EP—1)
The coefficients of A% are given by s {g+y+a+y+z)

(Incidentally, the weakness of operators of cqual range hasbeen .
mentioned previously and the operator [ 5P is unlikely to give good

results.) < "".\.
Writing down only the first ten coefficients and ignorigig"\;the
denominators we obtain the following: N
E® gives z—i—y—l—x'-}—y-'i—z, M'\"\.’
—4E10 gives —33— 3y —3—3y— 3% \Y;

The operators E° and the constant do not affect the first ten
terms and the sum of the squares of the coefficients of Ade is
2 AY
— {2028+ 200§ for),
123 L\ S
1 2y + 235
V28 iwadbiauli b o
Hence we have to make x2 +28 + >3 & mintrufhd "
Differentiating with respectito x, weé obtain

\§5+.32y§§+ zzgz O .53,
Also, since the ~£6&~fnula must reduce to the form {1+ K% if it
has no second di?férence error, we must have
»\’\ xbzyder=1  oen (23)
and N\ y+42="3 e (24)

2 & .

the fact that the second difference

P . . s
giving a smoothing index of 13 \&t‘ag

T:l&f§:31a3t cquation arises from
‘E‘es“\‘m:’in the operand is b(Zr* K, ), )
a¥d this has to neutralize the second difference error of 3b in the

operator.
Differcntiating the last two equations

dy, %
I+2'd‘§+2(£r_-

and __’+4fif-=oJ

with respect to %, we have
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Eliminating gi—i and jz from these two equations and equation (22)

we obtain ¥—4y+z=0. ... (235)
Equations (23), (24) and (23) can now be solved giving:
v=i% y=§p a= -l
The formula is therefore
B2 S N
_{a7uy+ 27 (W +ug) — 33 (gt u)h \
4375 o\

In actual practice x would probably be taken as §, v asind x as

~ —1, the theoretical result being too cumbersome, ¢ (

For maximum error-reducing power the forgfyla would have
been expanded, and instead of x*+ 232 + 22 the(Sytn of the squares
of the coeflicients would have been made a mbimum.

The resulting formula would have béén” dilferent, thus illus-
trating the fact that maximum errde-3educing power is incom-
patible with maximum smoothing power.

23. Recent practical developﬁa}é’ﬁt’s.

The practital"adBEy BrANEEEfSrmulae as distinet from the
theoretical aspect had beéiwery largely ignored until G. J. Lidstone
and . C. Fraser ,(zfj'n}ributcd two Intercsting notes to J.I.A.
Vol. Lxvir giving sbhe ncat labour-saving devices.

The rcader is(réferred to the original articles for details, but in
the numeriqali\ekample which follows use has been made of an
artifice gy\g@ééted by Fraser. If the formula does not involve any
sewnc{diﬁerence error then the values cbtained by graduating

&

N u,—(a+bx+ca®),
mj’v;l}fe}e a, b and c are constants, will be equal to the values obtained
by graduating #, and afterwards subtracting {a -+ bx +¢x®), This
means that the numerical values of #, can be reduced appreciably
by a suitable choice of the function a+bx+ex?; after the re-
mainders have been graduated we merely have to add back the
values previously deducted to produce the required graduation,
If the formula involves a second difference ¢rror @+ #a can be
deducted, but a term ex? wiil itself contribute a second difference
errot,
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24. Graduation of the A 192429 Table, Ultimate Rates,

The rates for durations 3 and over, “ All Classes Combined”, in
the & 1924-29 experience were given by the data for half-ages
201, 211, ete., and values for integral ages might have been obtained
by the use of a summation formula involving one or three even
surnmnations. Actually, in order to produce results quickly, it was
decided to use Spencer’s 21-term formula, as this is one of the best
formulae for general purposes. Values for integrat ages were deduced
by visual interpolation for most of the table, but where second gn\d\
higher diffcrences were appreciable a simple finite difference formpla®
was used at higher ages. A\ N

The ends of the table were completed by third differente extra-

polation, Tt is obvious that any summation formula pf}ahge Rowill
T b

H— .
leave = terms at each end to be filled 1n By wther methods.
2 e \4

Sometimes Makcham’s or Gompertz’s lawis 'z}:ssiimed—particu}arly
at high ages—but the precise method t0'P€ adopted depends on
the run of the data, and for the A 192429 rates a finite difference
method was found to be satisfistedy, 10 this conpection it should

T .OT‘g.ll'l o
be pointed out that the report states that the graduation was made
to show a more distinct inczda¥e age by age in the rates of mortality
above age 83 than that showh by the statistics”.

As a numerical ezgahm}le we shall calculate the graduated rates
{duration 3 and owesy'for ages 30} to 643, using the rough values
of g, for ages 208407743 for the combined data fo_r the years 1927-9-

The un gl;ad’lhjced values of 10° x g, arc shown 1n the first column.

Spencer’s&ir-'term formula is

SR s )+ 51

ot

g
-3

1
Fafasiil
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Ziz CRADUATION
23. The A 1924-29 Table, Select rates.

It is convenient to deal here with the select portion of the
A1924-29 table although the rates were not graduated by a
summation formula,

The select rates for durations o, 1 and 2 were expressed as per-
centages of the ultimate rates for the same attained age. )

Thus 7,0 was expressed as a percentage of g,y ult. Afteg ah
investigation of the actual percentages derived from thé efude
select rates it was found possible at duration o o assumé a per-
centage of 61 at age 45, increasing by -4 for eaghJyear of age
under 45 to a maximum of 682 for ages 27 apd’uhder and de-
creasing by -3 for each year of age over 43. o

For duration 1 it was assumed for all ages’ thit

kalzﬁ(@marfggé)- ------ (26)
For duration 2 it was assumed for'albuges that
Gar:s = O0p 8% 4l 11 e (27)

It will be noticed that, in &ach of these cquations, the ¢’s relate
to the same atw%hﬁg&lfbf‘;l‘y.or‘g,irl

o\
l\ie’d to a graduation by a summation formuia.

It is impossible by any analytical method to find what con-
straints are ip\i';iosed by a summation formula, but in Seal’s paper
referred tp\éaflier an experiment was carried out by the author with
Spencet’s21-term formula. As a result he decided to assume that
aboutNive degrees of freedom were lost. The original paper should
b\e referred to for details of the method. T'he assumption made later

N\ that Kenchington’s formula results in the loss of six degrees of
freedom is rather controversial and should be accepted with some
reserve.

26, The y* test ap{

27. Advantages of the summation method of graduation,

Once a suitable formula has been chosen or constructed the
process is purely mechanical and does not require a highly skilled
operator as does the graphic method.

The method is suitable for standard tables based on large ex-
periences and can be relied upon to give adequate smoothness,
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provided that the unadjusted rates themselves progress fairly
smoothly. An advantage of the method is that results are produced
quickly.

Perhaps its greatest merit, possessed by no other method, arises
in connection with functions such as sickness rates.

Suppose that
F(x)=ay by (%) + @ypa (%) + s (%) + .o+ @ (%),
where the @'s are constants and  is variable.

If the functions f, di, ¢a, +.- ¢y aL€ graduated separatcly by e,
same summation formula it will be seen that the same equationvill
connect the graduated rates. ~\

Sickness rates analysed according to period of attack (3 233, etc.
in the usual notation) are from their very natur¢ ,ad}ii\tive before
graduation. Lior instance \

B4z =28 and 25+ zsf'“.%%}{
If they arc graduated by summation theeslting rates will still be
additive because each graduated rate 5/ linear function of un-

graduated rates (see para. 10} 48"
Vhus 22 (graduated) = 5% (g hatedibr 280 (gradpated).
To illustrate this we shallconsider the formula
n,=K ,u + K_rﬂu',,ﬁg_{'%. L+ K Kt Ko+ ... '
X\ + K, ul_ R
but the argument still applies

In a summation formula K_ =K, ; :
ch this relationship does not

to the more g\e.i'léral formula for whi
hold. e
§3 x\iq%f)iy the same formula to graduate
that, 884" 258 (graduated)
B (20, + 25 L R
N\ ".&_r S o Ko f'fi}r-; (Fz];)f‘_ 1t 25N+ K, (2% + 238,
where all the functions on the right-hand side are ungraduated.

! sum 12
But #8 A+ =2

766 o' 12
28+ =

28 and 2% we deduce

Hence the right-hand side reduces to
K &2 K oz fatet K%+ KzP=2" (graduated).

—r & —r
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28. Disadvantages of the method.

(1) Although skill is needed in choosing a suitable formula, once
the choice has been made therc is no scope for individual judgment.
As 2 result it is impossible to retain any special feature of the ex-
perience (such as a discontinuity in withdrawal rates) which the
operator might feel to be an essential feature. It is certain to be
greatly modified in the graduation and might even disappegr
altogether.

(2) Unless the unadjusted rates progress fairly smootkly, the
tesults will be unsatisfactory. This means in effect thity the ex-
perience must be large. P\Y '

(3) The ends of the table always have to be comi:::’teted by some
other method. \

(4) The method cannot be used satisfactorﬂy for select rates, and
since it assumes that the function operated’air has negligible fourth
differences over the range of the formula, its use is in practice
restricted to ratios such as ¢, o etef Jtis therefore impossible to
take into account the weight of theexposed to risk at cach age.

www.dbra ulibl:e{f:fy’. or g.in
29. Tilustrative example.,

We shall conclude thi§chapter with an example which illustrates
many of the points iﬁs\cussed.

Example 6,

The follow{ng’ table is a representative cxtract of ten values from a
complcte table in which » ranges from 20 to 1oc. Column (z) gives the
values of\d*Certain function of » caleulated by a mathematical formuia.
Column. {3) gives the results of an experimental approximation thereto
apehdiffers from column (2) only in small superimposed errors. Columns

{T)and (5) are the results of graduating column (3) by Woolhouse’s
\fdmlula and Spencer’s z1-term formula.

(@) Test roughly the agreement between the theoretical smoothing
index of cach formula and the smoothin g power as discloscd by the figures
in the table. Give possible reasons for any aromaly.

{8) Suggest very briefly any reason for the fact (not confined to the
ten values shown) that the graduation by Woolhouse’s formula, which is
theoretically less powerful than Spencer’s, produces results nearer to
the true values.
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o "T'rue value | Experimental Zl Graduation of column (3} by
of function ; value ; Woolhouse ‘ Spencer

m @ @ @w . ®

50 691 6673 681 673

31 6g6 719 688 681

52 ‘ 700 : 702 668 6g2

53 726 | 728 723 714

34 762 749 760 VELE

35 821 844 81g 811 2D

56 : 9It g19 go8 908 )

57 | o4 1028 1040 A0t

38 : 1221 1220 1218 N2

59 1462 1473 1437 N 4T

ANY;

To deal with (a) we must first find the qu?g:r’chuated errors ¢, Le.
the differences between the true values given) in column (2) and the
observed values, and also the graduated, ereors, taken as the difference
between the graduated and the true.y.’a}ues. The results including the
third differences are are shewn %\Re; Geaulibracy org in .

g, and e, represent graduated\errors produce":lbby & use of Wool-
house’s and Spencer’s formulde respectively.

The smeothing index deatsnot with the third differences of the actual

errors A% but with théstandard deviation of the values of APe deduced
As a rough test we

from a great many Applications of the formulae. 38 es
may however compart the actual values of A% and A taken positively.

TA% (disregarding signs) =4 5.
¥ | A% | @0 Woolhouse graduation =34.
% A:"t'z\f for Spencer graduation =1L

. ASBmparison item by itera would be useless. . Y

\\‘I‘hus 3| A%| has been reduced in the ratio ;5 appProx. by Wool-
Muse’s formula and in the ratio 4y approx. by Spencer’s formula.

Bearing in mind the Jimitations imposed on the test by the fact that

only seven values are available, it may be said that the result for the first

¢ th the smoothing index of %

graduation may be gaid to be consistent wi

calculated on p. 108. o ‘

On p. 201, however, We showed that the smoothing index for Spencer’s
formula is about 45, so that even allowing for the roughness qf thf: test
the result of 2 produced requires some explanation, An examination of

1 .
the difference table shows that the aumbers involved are very small and
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indicatc a lack of significant figures rather than deficiency in smoothing
power. Ilad another significant figure been retained the result would
almost certainly have been improved. Even if a series of values js ideally
smooth the third differences will exhibit irregularities if the values
arc curtziled or rounded off, so that they nmo longer give the exact
figures.

(b) It is debatable whether the word “powerful’” applied to a sum-
mation formula refers to error-reducing power or smoothing power,
properties which cannot both cxist to the greatest degree in any one
formula. In (a) we considered smoothing power, but error-reducing, .
power remains to be cxamined. We have shown on pp- 195 and 203, that’
the error-reducing index of Woolhouse's formula is 423, while, that of
Spencer’s 21-term formula is -378. N

As a rough test we may consider the total of the errors.ngard?es.s of
sign, although the error-reducing index relates to Standa}d deviations
and not to the results of one experiment. )

From the previous tablc we have N

"T'otal of ungraduated errors, irrespective of sign = 126.
Total of graduated errors, jtrespective(0f 8ign (Woolhouse gradua-

A
No

tion)=45. N . .
"Uotal of graduated errors, irresP@i:;lve of sign (Spencer graduation)
=1 “i?"’i‘.‘;-dbT‘aUIibl'al“y_org_in
‘ x I True value #; : .»‘\Auj A, i At | __\1;&_ ]
—_— B _\—."ﬁ'_'__" I 1 |
! 50 6o X\ | |
s b 5 |
| | o 0 s 1, |
Cogz ()Y 706 w0 ! |
i R sﬁw 20 6 \ ‘
N 726 16 ‘ 1 ‘
N 30 5 ; ‘
Q 54 ‘ 202 23 | 1 ‘
\/
’ s
‘ 53 821 3t | ‘
” 4 ’ ‘ 1 |
b QIT o |
130 ‘ 10 | |
| 5 041 ! 50 I
¥ ¢ 180 ! It I |
38 1221 61 ‘ | |
241 | }
59 1462 ]
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As we know that Spencer’s formula should reduce the unadjusted
errors € to about one-third of their former value we are led to suspect
that the total of 118 is due in part to distortion of tho truc values,

"The table on p. 217 shows the differences of the true values,

From our previous work we know that ncither formula introduces a
second difference error. Woolhouse's has, however, a fourth differcnce
error of —278%  while Spencer’s has a fourth difference error of
—83h%y . A

Hence the graduated errors we have been considering are not e true
errors which we previously denoted by ¢, but are of the formi\* 54 +e
(Woolhousc) and — 126 4¢ ( Spencer). Fortunately the fousth, difference
errors are constant so that in the first part of the solutionvthe columns
headed Ae, A% and A% in the table are correct, although'the values from
which Ae was obtained are misleading. The smogfliness of the results
is unaffected. \

To find the graduated errors ¢ we must eliminate the fourth difference
errors. The following values will be produced.

~ N
x | \KTOOIhQuée: Spencer

0 Y

51 -3 -3

wws.g.dbrauhb;’éry.\ g.in ‘ —>

53 A 2 | o

5.8 SRR B

%‘.,} 3 2

P S = 3

N 57 4 ! 2

M 8 2 : 2

INT 59 o | 1
."\.Q¢ —_— —_— —_ i

o%”” ‘ Total 27 : 20

. \"“\ It would be llogical to introduce decimals, as the values were all
; recorded as integers and the fourth difference errors were taken as -3
and —12.

If allowance is made for the small number of values tested the totals,
irrespective of sign, viz. 27 and 20, are not inconsistent with the smoothing
powers of the two formulae,

The relative power is more consistent with the error-reducing indices
than the absolute power of the formulze.
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EXAMPLES 8 P\
W
I. Analyse and criticize fully the following sumfp%tion formula,
evaluating any criteria which would enable you Eo compare (@) its
smoothing power, (8) its wave-cutting properﬁe;s{,\\?v&th those of another
formula (21 31(3] R4S
Up=== 2‘5‘3_{ —2uy+ 15 (w4 “—1}"‘ 8 (g +2_g)}
3 . \J .
Hustrate its use by graduating thevopﬁi;ral terms of the following series:
112, 103, 124, TL 1’15%?‘1'5?,1if’l‘-§"ﬁr§}'g\i11
127, 124, 112, 130, 127, 118, 133, 130.

2, Analyse apd criticize'ﬂ;% following summation formula;

g%{uﬂ Flug )= tu)h

<
3. Calculatehe values of 7, m and # in the summation formula .
o :

T h?"ﬁr;::ula contains 1§ terms and does not involve any second difference
errpt. ..

\Show how to apply the formula by graduating the central terms of
the series

OJ 4'! 4', ‘1') 5; 4-1 2, 4! 3! 59 6’ 4! 7) 5‘ 3’ 5" 7! 6’ 9’ 8’ 5'

A\

BT g1 1 .
33

4. State briefly the theoretical basis 0):f forn_lulae for su:rllmatr_on
graduation and mention the circumstances in which the formulae give

satisfactory results.
Find the missing part of the following 17-term formula, calculate the



220 GRADUATION

smoothing cocflicient and discuss the merits and demerits of the formula
as an instrument for graduation:

[5_i5[7]' BB+

5. A summation formula of graduation has been wrongly written in
the last two terms of the operand as

[53[e1] .
——{~[7]+2[5] - 1}, N
110
N
Corrcct the mistakes, analyse and criticize the corrected formulh and
compare it with any standard formula of the same type of whigh you are
aware. P
/4 N\ 3
6. Explain the following statement, which refe)'@ to Woolhouse's
summation formula ’
e
[.'J] 3 N

2T Uy Ty —iﬂ}}{. ¢

“The errors in the ungraduated valuds are reduced by the graduation

to about the values they would haye, ift"an ungraduated expericnce of

five times the magnitude. The smogthniess of the graduated curve would,

however, be mdﬁw\gl‘éﬁf@r‘]{#‘fﬁ?ﬁ%ﬂ‘gf'ﬁn ungraduated curve based on
the larger experience,” Y

7. In graduating nimftﬂlit}' rates by sammation formulae, what
advantages are gains{%’y graduating scparately the exposed to risk and
deaths? \

Mention thesptincipal objections to graduation by means of sum-
mation formylae?” It has been suggested that graduated vzlucs of g,
can be obgs{ﬂlitﬁa from the graduated values of ¢, and ¢,,,, by use of the

formula\)
\’a\\ Tt = Gl + (1 — ) ¢
What is the rationale of the suggestion and how would von calculate
thcvalues of g, if it were desired to sccure equality between the expected

\ deaths obtained by use of the graduated select ¢'s and the actual deaths,
in each year of Assurance within the select period?

8. (@) A mortality cxperience has been graduated by the following
process:

(i) The exposed to risk were replaced by a smooth curve of similar
shape calculated by a mathematical formula.

(if) Adjusted deaths were obtained by multiplying the substituted
exposed to risk by the ungraduated rates of mortality.
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{iii} The adjusted deaths were graduated by 2 summation formula.
(iv) Graduated ratcs of mortality were obtained by dividing the
graduated deaths by the substituted exposed to risk,

Discuss the advantages and disadvantages of the method.

(6) In the graduation of the above experience the unadjusted and the
adjusted deaths over the range of ages from 45 to 70 were approximately
constant at 200 deaths in each year of age. The summation formula used

as @%ﬂmHBmer

N
What are the approximate probable errors, expressed as percentagcs
in the ungraduated and graduated rates of mortality at age 577 )

g. The table below shows index-numbers of the price df 4 staple
commodity over the years 1872 10 I9TI (1891 = 1000). For ghe purpose
of comparison with the trend, over the period, of the .ﬁribe of another
commodity, the price of which exhibits similar featules, 3t is suggested
that the series be graduated by a surnmation forrg;t;i}vDo you approve?

Devise a formula which you would considetistritable in the circum-
stances and calculate its smoothing index. AN

—_— JR— =
- Inde oy Index . Index |
Year | I]rj'lttlfx Year | I;qix \ Year ne. fxear no. |
. [ _"vwsbidbraolibrary ergin — — —
7z 1336 1 1882 | 1235 | 1892 gbs | 190z | 997

1873 1482 | 1883 | L9255 1893 973 1go3 832
1874 11{;3 1884 (| Wi266 | 1894 998 | 1904 | 880 ‘
1875 1519 198\ | 1288 § 1895 | 1024 gog | g3o

1876 1469 | (1886 | 1310 1896 | ro47 1gob | 950
1877 | 1400401887 | 1270 1897 | 1069 I 1907 | 970
1878 | 1yphol 1888 | 1173 1898 | 1o1r | 1908 | 990 .
1859 | ¢r35z | 1889 | 1121 1899 | 994 | 1999 ‘ 96{
ISSO\'\\f:;II 18g0 | 1070 § 1999 935 | 1910 . 913
18853} 1z50 | 1891 | 1090 1901 946 | to11 | 895 ‘

i iR A A A
N

“N5. What is the cffect of applying 2
which is zlready smooth? Illustrate y
application of the formula

L 2 515

summation formula to a series
our answer by considering the

20
to a serics whose nth term is of the form
' a+5n+m2+dn3+en4.



CHAPTER IX

GRADUATION BY MATHEMATICAL
FORMULAE. MAKEHAM AND
ALLIE D CURVES ~
1, Preliminary consideratlons. O\

Hitherto we have started from the data and derived a mog'&o*;less
smooth series of values from them. In this chapter Wbéprhmence
with a smooth curve and adjust the constants in £l eqﬁation to
the curve so as 1o sccure the best adherence to dam,\\

Before attempting this line of approach in praetice it is nccessary
to bear in mind the source from which the cfude data were derived,
any heterogeneous features and other pccﬁﬁlirities

Heterogeneity is usually the g,n,atesx stumbling-block, because
any rate of decrement derived from ‘data open to this criticism is
unlikely to follow a single mathcmatlual curve over its whole range.
Further, any g&vﬁfﬂﬁ&bﬁa‘f%’féﬁfﬁ&%{@r derived from the data, is
liable to be suspect unfeg\ised in conjunction with a population
similar in constituti ito’that on which the table is based.

As with the graph%method we can operate either on the exposed
to risk and decremen ts separately or on the crude rates of decrement.
The advantages and disadvantages of each method were discussed
in ChaptenVI. In dealing with mathematical formulac the gradua-
tion of*exposed to risk and decrements separatcly has the added
dlsadvantage that the rates finally obtained will be represented by

otomphcated expressions difficult to handle in theoretical work, e.g.
it dealing with joint-life functions.

2. Makeham and Gomperiz curves.

The first important contribution towards finding a “law of
mortality” was made by Benjamin Gompertz, who found that g,
could be represented approsimately by the formula Be?, i.e. by the
successive terms of a geometric progression. He then proceeded to
find the best values of the available constants 8 and e.
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A development of Gompertz's law was subsequently made by
Makeham, who adopted the now well-known formula

p.=A+ De*,

With its three constants 4, B and ¢ this formula was found for
most tables to give a satisfactory agreement with the facts, and more
standard tables have been produced by its use than by any other
method. A mass of literature, mathematical and otherwise, has
grown up around the formula, and the student will be familiar with
the ways in which joint-life functions and problems involving com<™),
plicated multiple-life statuses can be dealt with if the table usedshds
been graduated by Makeham's formula. So convenient is ‘ii}‘t\ﬁat
its adoption is often justified at the expense of a certain, amvunt of
distortion of the facts. O

Of recent years it has been increasingly difficult#0 Bbtain satis-
factory graduation by this simple formula. Alliedformulae, such as

=4+ Hx+Bc",’J::\“
have been tried without any very great’syécess.

3. Preliminary tests, . _

Usually the rough data are ‘§i{¢ Abgaglilcpmenaigliar decennial
groups. Even when this is nat'so it is desirable to amalgamate the
entries into one of these groups. ‘

By doing this we rédice irregularities very cons.ldcrably, par-
ticularly at the ends'df the table, and it is much easier to form an
opinion as to whether a Makeham graduation is likely to b'e suceess-
ful by cxamin@@ group rates than by examining rates for individual
ages. ,_§~ i ‘

It wm:be assumed therefore that the exposed to risk and decre-
menfShare available in groups of five years. .

\If\""che exposed to risk is given in the initial fﬂrrp E,, it must be
adjusted to the central form Eg by the deduction of half the
corresponding decrements.

Note. The ¢ in F is not in any Way connected
Makeham’s formula.

In Chapter I it was shown that Hardy’s formula

with the ¢ in

i
o= {wo— FeAw_y)
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could be applicd to the central exposed to risk to give P, for the
central point of age of a group and to the deaths to give P, for
the same age. It cannot, however, be used for the cxposed to risk
in the “initial” form, since this is esscntially a discontinuous
function. This accounts for the change to the “central” ex-
posed K,

The application of Hardy’s formula then gives a Quccnsuon of
values of P, and P, 1., and hence, by division, a sct of values bt ) Lo

From thesc values it is possible to form an opinion ;\hﬁther a
Gompertz or a Makeham graduation is likely to prove sOgeesslul.

If the ratio of successive terms is roughly constang a Gompertz
curve is indicated, with g, of the form Bet. To, @8t il a NMakeham
curve is appropriate we form the first dlffarenc.cq}f successive terms
and then find the ratios of the differences, The first step eliminates
the constant A and should produce va alues roughly in geomctric
progression. y \

Sometimes it is more convenierit, to deal with colog p, instead
of i, and since these functmus vare of the same form the same
pI’UCESS can be aBpJEJ autlobralgllor in

In the prcllmmary testsorthe graduanon of the a(m) and a(f)
Tables, based on Britjsh Offices’ annuity experience over the years
1900-20, the functidncolog p, was used, with the following results:

N

" Males
- )\ } - _ _— —
@ @ ® @ '
WMo 00436 o176 40 | 201
) ss 0oh12 ‘00354 1-58 126
6o 00686 ‘00446 146 132
63 ‘01412 ‘00588 I42 1-gb
<0 02000 ‘0I152 158 179
75 ‘G3I52 62050 163 128
8o . 05208 02623 ' 150 1734
8 | 03831 03520 145 162
6o "II351 : 05719 151 1-68
95 17070 ‘0gh30 156 ; —
100 26500 - , — ; —
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The report comments on this table as follows: “Tt will be seen
that celumn (4) would not be much distorted if an average value of
1-51 were assumed; this value is too high up to 63, then too low for
the important ages 70 and 75 and a little too high afterwards. The
average of column (5)is 1-58 (or 1-51 if we exclude the first and last
entries), so that the evidence of the table leads us to say that the
mortality follows the Gompertz law sufficiently ncarly to justify an
atternpt at graduation and that ¢3 isabout 1-51, 0or log ¢ about-036....”

The table for females was as follows: \

N

Females \\\
[ - —_— —_— ! .
D Awe las I s A col .
! b ey | cologp, | Bcologps | %‘%}f 3'2;5;5; .
o e e | 0470
I oso | 00349 | oco87 | 1A T 12
| 55| 00430 | ‘00132 ¢ ‘11230 ‘ 200 |
) 6o ‘ 00568 : 00265 N\ T47 i 1-68 ]
| 65 | ooB33 00445 MY T'33 ‘ 83 |
| s’ | 01278 008134 ™ 1-64 i 182 |
g5 1 ozogl orgdpn” | LTE | w8y !
%0 | 03574 ' ws@wasn-aul‘ibmlﬁ%.g_m‘ 1'40 |
| 85 b 06349 04054 Y r25 |
i go ‘10403 * 05087 ‘ 1-49 ‘ — ‘
Lo | TSR e T —

The report copfinues: This table shows that the later values in
column (4} gre'}cbnsiderably greater than the earlier values. Tt
follows, th”si:&re, that there is little hope of a graduation on Gom-
pertz’s ‘hypothesis. The nest column, which supplies a test for
"Vakeham’s formula, is better and the values opposite ages 3510 75

”goiﬂ’d be averaged at 184 without leading to distortion.”
) As will be seen later, it was found impossible to produce 2 satis-
- factory graduation for either sex, using a single curve for the whole
range. The aboeve tables are, however, interesting, since they show
the sort of results that preliminary tests are likely to give in practice.

4. The Makeham constant ¢.
Tests on the above lines give an indication of the constant ¢, but
the following method is better for finding a more exact value.

Fuasiil ) 15
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Suppose that by the use of Hardy’s formula we have obtained
crude values of g, for ages 274, 324, 373, ..., 623, 674, the values at
younger and higher ages being unreliable.

It is desirable to base the value of ¢ on all these ebservations. To
do so we form three composite functions:

Sy = oz, + 3pbsa + 3iuzs T Optass & S04re F 3phaze T Mors
Sg=frans + 34art + Stbans + Optans  3itsar + 3s7s T Moot
Sa=ptam+ 3itant Spars T Otbsas + S1taze T Jreas Frrars L O\
The coefficients 1, 3, 5, 0, 5, 3, T are quite arbitrary ancb jmight
equally well have beentakenas 1, 2,3, 4,3,2, 1. T'he reasm H}r their

introduction will be made clear at a later stage.
If pep= A+ Be, K7,
\\ - "
83— Sy = B3 (68 1){1 i 367+ ¢4+ 686} 520 5 369"—i—c‘”)

and S,—S; =B (P 1) (14354 5c1" .b()clc' 4 5020 a7 L g0

el
P
S 3

1@-\ - n.‘;;n '_'\ ‘
Hence o 1
kSz— ISI 4 ». ( )
One reason for the mtmdumoﬁ of the coefficients rising to a

dbraulib. .
maximum in the Centre atig ?Hgmngxlhmg towards each end is that

less weight is thus given“to the values pae; and pgep which will
generally be based on fewer data. Most weight is therefore attached
to the values in Ké\:m’iddle of the available range.

Another impbrtant point is that, without some such coefficients
being mtmdn{ccd Sy — S, would reduce 10 pgys — iy and Sy — 51
t0 prgzs — pings 'the remaining values disappearing. The cstimate of ¢
would #let’be based on all the available values of p but on four
valugs, only.

JHaving obtained an estimate of ¢, logy, ¢ is found and is usually
rbunded off to two or three significant figures.

5. 'The Makeham constants 4 and B.

Wherever possible it is desirable to allow for the size of the
exposed to risk at each age or group of ages, and although this is
impossible in finding a trial value of ¢ it can be and should be done
in finding the remaining constants 4 and B.

By the application of Hardy’s formula we have a set of values of
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P,ppand P, from which the values of j1,, used in the preceding section
were derived.

If Makeham’s law applies these are connected by the equation

Popg=P,(A+Be%). e (2)

Once ¢ has been found as above the only unknown quantities
are A and B.

Thus, using apy two ages, we could form a pair of simultaneous
equations such as (2) and solve for Aand B. This, however, would ~
not make use of all the data so we use instead the equations

P p,=ATP,+ By : Q)\\
and SEP, u, = AZSP, + BEZCP,. i)

The first of these equations is formed by summing all thé available
values and the second by taking the second summatidns:

'I'he two simultaneous equations can be solved\for’4 and B.

"I'he graduation can now be completed, ar}d%ﬁthough there is no
need to test for smoothness the usual tegte Or adherence to data
mmst be applied. These may indicate misa‘tiafaetory features, such
as a large discrepancy between the: ﬂﬁrd summations of the actual
and expected deaths. In x*ieW~{va:£h¢ﬂ§EYi}.izpa%p_i(ﬁhg_{q and B were
found the first and second sugnmétions ghould show ne Hiscrepancies.

As a result of the tests @ 0eW trial value of ¢ may Ire chosen ffmd
the constants A and ,{{‘e.—‘calculated, thus giving a new graduation.
IFinally, the best value of ¢ may be found by interpolation from the
results of the t‘v\\-‘d. ttigls. For instance, if the discrepancies in the
third summatjans of the actual and expected deaths are of opposite
signs, avahe of ¢ might be adopted so as to make the total dis-

crepancys pproximately zero.

Adithe same time it should be borne in mind that the advantages
“ofva Makeham graduation are sO great that the statistical tests of
\éherence to data should not be applied too rigorously, and much
greater discrepancies than would normally be allowed may well be
counterbalanced by the practical convenience of the formula.

6. The Gompertz [aw- _ )
As the Gompertz law is the Makeham law 1n the special case

where A=o0 any method used for the latter can be applied to the

former.
I5-2
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The following simple method is, however, preferable,
Since Py =Bl
we have logPp,=xlogectlogB+logd,. ... (5)

Summing for all available values we have

Zlog P, =logeXx+2log R+ Xlog P, T oo (0)
YT log Poji, =log e+ S8 log B+ EXlog P b ... (7
N

Thus loge and B can be found in one process.

Zlog B 1s simply 7 log B, wherc n is the number of obbch?xtlons
summed; and x..
)= n{n+ )sl o8,

2\

Another method is described in the repost\on the graduation of
the a () and a(f} Tables. This method d@es not make any allow-
ance for the weight of the cxposed tp\nsk at each age and may
for this reason occasionally give pooiresults,

X logB=logB{1+2+3+...7

*
N

7. Example 1. <

As‘;umlng tﬁﬁt"‘[ﬁf‘yﬁ‘fﬁ}ﬁ&[&a?@a?& Bife indicated that a Makcham
graduation is likely to bf; succwstul graduate the following data in

that way:
¢ \J Table XX

i——-di;gﬁ_'g‘mups_ﬂdi_ _LY:;;;.:(I t0 usk : Leaths |
| Ny | 15,518 .: 63 :
'..\‘;,\".45“‘49 [ 19,428 : 144 |
NN 5054 [ 21,504 : 219 i
P ssse 0 a8 0 38
..\';:'. 60—-64 19,174 | 465 ;
'"\: 65—69 15,775 537 l.
\/ 7074 . 11,414 6},3 Il
75~79 .l 6,993 644 !

8o-84 l 1,276 P

35—89 l 1,096 217
Go—g4 L 201 b7 |

In the absence of information to the contrary it must be assumed that
the exposed to risk are in the “initial” form and must first be expressed
in the “central” form by deducting half the deaths,
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Hardy's formula #,= E{zr.:0 — gty 4} then gives Py and Pop, for the
n

central point of age of cach group.
The work can be arranged as follows:

Table XXI
£ : B ] Central .
| Age-group. mosedo | 4@ A% (2) 5P, 'p:;tg\.
vom e e | e @
s0-44 | 15,4855 R
3,870 ; 4 .
45-49 ¢ 19,356 ~1,742 | AgM30 | 47k
2,128 ’
30-54 | 21,4843 ~ 1,911y 21,564 52%
217 . '\s 1
55-59 | 21,701 22976 | 21825 | 57e
: _29?59 ,". - i 1
o ba-6g T 18,0415 ANV 686 18,970 624
344N e o
i 05-69 15,4903 "\"\:‘-"\'\’-}‘lbraulﬂ&chrt ofpig? ! 675
: <2425 :
7074 | 11,0705 Y 24 | 1nO70 | 7T
\sﬁ.f’_ 4,401 l
7579 6,670\ w0 | 6,639 | 772
‘.\“'.}w : _3’631 q 821
;B84 | BP4OF 1,57 2,975 z
\..\;. . —2,053 . 936 g1
85-8g\  ¢875 1,233 7t
3”'..‘9\ — 8zo0
9004 675 | 1

vV |
If the differcnces are set out as above Atp_y appears on the same llr_m
as W, Colurnn (5) is obtained by subtracting Zyth of the e:ltr}ics 1?1
column (4) from the corresponding entries 1n column (2}, Althoug
decimals were retained in column (2) to show morc clearly how the figures
were derived, all other entries have been vounded off to the ncarest
integer. :
Table XXII is obtained
that Table colamn (6) is deri
by the corresponding entries in column

in a similar manner to Table XXI. In
ved by dividing the entries in column (5)
(5) of Table XXL
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Table XXII
— L N ]
D th | | | (,c_nrrzll‘
Age-group | ca = A=) | A(2) 3P . i point of !
, | | " agea |
0 o @ @ e e o
4044 | 63 I | | | i
Lo | | | A
45-49 144 i 4, 144 | coopg 147
| 75 EPLeN
so-34 | 219 | 84 1« =215 o100 |052¥
] 159 | | A\
55759 1 378 b= g2 3B ong ) a7
| " 87 | LY
| 6064 1 465 5, 405 (P2 62}
] L \ 92 ) ~‘
b65-69 ' 537 | 36 : 568 0357 07%
| 128 N\
7074 | 685 | — 169 M, ~}692 -0z w2}
| - 4']: | ):':‘ "ilo |
75779 | 044 | | T3 | 650 | 0979 | VI
wwwldbwu@lﬁrym’gm ] i
8o-84 | 471 ‘ — 81 | 474 1 153 1 82d
l -2{4\| ]
85-89 | 217 | e 104 21y , 2296 4 87%
| : l\\ISO i i
L go-94 | 07 ¢ \ '
BRI A S |
'.\,)
’\Q»I

As w%imw have nine ungraduated values of p,, from which to find a
trial vald ot ¢, we proceed as follows:

o) “Sl =frgzs ¥+ 3ttang Sty T Othgar F Sptgrs + 3ftans T e = 17352

\/ Sy = figay + Bitary + Sikess + Oty + Shiazy + Bians + paes = 173042,
S5 = ags + 3ftens + Sttsrs + Bptay + Sptary + Jitans +itare = 18392
Hence - Ec".:_SE :'_6_75_0 =1-373,
. 8, ~8, 4290
giving 5 loggee= -03036.

For convenience we také
~, logyge=-04.

-.\

|
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Then, by using five-figure logarithms, Py, ¢, Py, ¢, etc. can readily
be found as follows:

| ™ Ton
x log &°P, (- 1::: = ijﬁ P, P, Py, |EPppiy
I IQ ) .

L (1) (2) (3) @ (s) ® & ®

47 5aBgsr | 3,087 | 3.087 | 3,886 | 3880 | 201 29
523 | 573478 5430 | 8,517 | 4313 | 8199 | 43 | 72
571 | 503099 | Bgro | 17227 | 4365 | 12564\ 76 | 148

621 | Gomgro | 11,998 | Fo.225 | 3,794 | 16,358 | 93 | 241
671 | 619233 | 15,572 | 44797 © 3107 | 19,465 | IXI | 3534
721 624516 | 17,585 | 62,382 | 2214 21,679 | 138 .490\"

mml | Gra2319 | 16719 | 79,101 | 1,328 | 23,007 | 130 | \b2o
| 821 | Gojasz | 11872 | 90,973 | 595 | 23,602 1 95N ?'Ig :
| 875 | 577iBe | 5914 ¢ 96,887 | 187 | 23,789 |73 | 750 |
| — 1 = 96,887 | 432,196 | 23,789 {152,549 758 | 3425 |

I'he figures P, and P, p, are one-fifth of the.v}aﬁl\és in column (5) f)f
Tables XXI and XXII. Although it is not I}B(ESSM'Y to d“'ldf’ by 5 in
this way in finding 4 and B, it has been dore'0 draw the attention _of the
render 1o the fact that the factor 1fn in&ardy’s formula had previously

been .ignorcd. www,dl:r_'aul1b1'ary_01'g_m

The equations for A and B arex :
758 =23,7804 +96,887 x 10°B | . n®)
3425 = 182,540 + 432,196 x 10°B
The solutions of the\cc\i‘détions are 4 =-000,910, B= -000,076.
So that: “‘uw= 000,910 -+ 000,076¢”
whcre R ’\ logyy £ =04
'The followifg graduated values are then easily caleulated:

S -  —— T i | ad - FER Bk
{Contralige % | 47k 523 573 a2t i%_ 724 ‘}‘;l‘_ B B |_x_!
.,t-»tx " ’ - ;Euj_q o_mqﬁ - -oThoT | 02404 a3Hoe - 'oﬁﬂ _gsz -15255 '24L 4

’_tss_F_zz_ﬁj 351 ] 473 | bob i 678 | 6ar | as4 | 226

| J—
|

fxp voted deaths i

The total of the Expected deaths, 3790, is one more than tge ;OFal of
the corresponding ungraduated values. The student will fin 1;:1 z:ln
instructive excrcise to test this graduation thoroughly by the methods

explained in Chapter V.
8. Cutves allied to the Makeham curve. ‘

When the general trend of mortality altered and it was no longer
possible to graduate successfully by Makeham's law, attempts were
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made to modify the formula. The most important modificaticn is
po=A+Hx+Ber, ... {9}

To fit this curve to the data the work is the same as before as far
as the calculation of the rough values of p,.

The first differences of these values are of the form =+ Jc%,
where « and 8 are constants, and by working with first diitercnces
instead of 12’s the constant ¢ can be found in the usual way.

A4, A and B can then be found from the equations O

ZPp,=ATP,+ HXxP, + BXc*P, ‘ e
SSP,yu,=ASIP, + HESxP, + BSYcoP, o (10)
ELEP iy = ATTEP  + HEEXxP, + BEEER T
Another assumption which has been experimetfxtéd with is
L = A"+ b, v L (11)
" "To find the constants @ and & we necd/foit values of t, at equal
intervals. We might for instance groug” Ehe data decennially instead
of quinquennially; convenient age gmups are 25-35, 3545, 45-55
and 55-05.

The apphcat‘ib‘ﬂ‘b*fifl'ﬂfﬁ’j,b&af&f‘x?ﬁﬂa% ili then enable crude values

of 11, for ages 30, 40, 50 anth6o to be found:

g = ma0 4 nh30 —{, My (12)
p4ovma4°+nﬂ§<‘{—- L:c-; MA {x\ here e=4a!, ... {13)
feso = ma®C £ wb™ = Lic® + M2 =51, (14)
pau=ﬁ;ﬁ“é}x—nbﬁ":Lx“-&ﬂfMJ ...... (13
Fr\thcse we obtain
el .“40 =LM{x*+ 2% - 2x2) =LM{x—2A)?

N 40 peg—fag  =LMGeA + e —2:82) = LM (x—2)% A
@ Vand -
J.L:;U‘LLSU - 'IL40FL50 = LM(KB +- )\3 — KaA —_ l{}\z) = L__"TL:T(K — )\)2 (K -+ )\) /

PP {16)
giving s = Faafen !”-50 )
Haaltso = Hip L (17
and ' e = Hgofsn — Fag Hsn

o P’».ﬁn .U«;o E

Since the p’s are known « and A can be found and thence @ and &.
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The remaining constants m and » are best calculated from the
equations |
ST, ) 69)
EEP?Px=mEEGxPx+?;EEbTPx . PPN

There is an infinity of curves of this general type which can be
fitted 1o mortality rates. :

‘The general procedure is usually the same. Crude values of p_
are caloulated after suitable groupings of the exposed to risk and
deaths, and constants having theage as index (suchas ¢ in Makehams,
formula) are calculated from the values of p, suitable arbitmrjr
weights being introduced where possible to lessen the h?p}qythnce
of the u’s based on more scanty data at the ends of the#@xperience.
Considerable ingenuity is often required and no gene)%a} rules can
be given, ! \

" Once these constants having the age as imdif;% are known, or at
least suitable trial values adopted, the rqrnahaing constants can be
found by equating the first, second and: gven third summations ‘?f
the actual and expected deaths, as¢ifl equations {10) abeve. 'Tt 18
usually unwise to introduce suiinb dtony eyondotheihird, since,
apart from the large numbers’ involved, too much impostance is
thereby attached to the rates at high ages where the rates are 1f:ast
reliable. As an alter tijfe: summations over half the range might
be used instead of Asingle summation over the whole range.

9. Application 0 m, and g..

Someti@"gé'it is desired to fit a curve to mx,.the central rate C?f
mortalit'y\, instead of to jt, The only modification of the above 18
in i initial stage. From grouped data we can always find the central

tetm by the formula
o 1f Ty
W= 0 g )

where # is the class interval. ) P
Hence from the grouped values of E¢ and 8, we obtain not £,

and P, at the central point of age but E¢ and 6, for the central
age, e.g. age 32 for the qu{nquennial group 30'—35. Crude values of
m, are thus obtained and the rest of the_work is as before.
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Simitarly, if grouped valucs of E, and not Ef arc used, the values
of E,, for the central age obtained by the use of the {ormula enable
g, to be calculated. It will be remembered that the formula

1 TEEE S
tg=--{Wg— Algy
T gt T
can be applied to any function, continuous or otherwise, provided
that fourth and higher differences are negligible. ~

10, Perks's formulae. ¢\ \

Inapaperin f.f. 4. Vol Lxnir, W. Perks has given somem‘m esting
formulae which have produced good results with m@dcm data and
which represent the most promising attempt of mctnt vears to fit
a single curve to the whole range of a table. & R’ paper should be
read carefully by anvone interested m;mode(ﬂ Aevelopments.

The principal formulae discussed AIE- \

A‘ Hr,

1, (0T ) = T (both functions are used)

wiww. dbraulibrar y ’01 34“1— Be=
PSR e 1 D

Perks himself aqsumied‘\an arbitrary value of ¢, but it is possible to
caleulate one from ‘the data on the lines of the previous examples.
As an exercise the veader 18 advised to ev olve a suitable method.

'The remaihidg ‘constants can be found as usual by the method
of successxi?s summations, although the denominator presents
difﬁcultg( JT'0 avercome this the equations can be written in the
form®

and

AN po+ D, = A+ Be®
«(‘rm'd Ke=p + p + Defp,=A+ BO”}
First, second and, if necessary, third summations can then be
formed, and if ¢ is known the remaining constants can readily be
found.

A word of warning is advisable in this connection. I'he third
summation is open to objection because of the weight given to the
observations at ages remote from the mean; this applies with still
maore force to the fourth summation.
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To make up the required number of equations therefore it may
be necessary to take the second and third summations over each half
of the range. This is to some extent fitting the curve in sections
rather than as a whole, but the tests for adherence to data will reveal

any weakness in the results.

11, Example 2.
The following is a good example of how a variable denominator can{

be dealt with. A\
Graduate the withdrawal rate in the following schedule by the fp{lhl{rﬂ

o= a A\
" han O\
A
| _ . v %‘:late of ;
; Exposed to ris 7t \ " withdrawa
* Duration # of withdrawal w 1thclra“jéil.3\\~ W
E, - Qg BT g,
o 1600 o\ ‘240 ! "159
I 1800 JoN© 102 'ggo
e 1800 v‘_\':s.fxami'u_dbtzél:(’libran y.org.g]_s
3 1600 “3° 8o 030
4 1260 54 1045
3 ’ iﬁbo 28 :035,
6 % 500 9 |
N s | o |
» [

A%/
The exp:aﬁéd’];o risk varies from 1800 at durations 1 and 2 to I_Oot}flit
duration 4,86 that any attempt to find & and b from the rates given in the

last colfinim would be unlikely to give good results unless proper allowance

weresmade for the weight of the data at each duration.
: ; and T, rather than the rates

(It is easier to deal with the values of E,

4\
@, and we first write the cquation
W, 4
E, b+n
in the form (B+n) W, =alt,.

By summing twice, we obtain the equations for a and b2

PEW, + =W, =ank, }
GES W, + EEn W, =eEEE,
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The necessary calculations are as follows:

— ————
| on |l E, | IB, | w, | =, | aW, | xaw, | Grda
ol @l @@ el ® (8)

| o | oo = 1600 240 240 | — o — | 146 |
l'1 | 1800 ! 3400 : 162 402 | 162 162 0911 |
.: 2 | 1800 | 5,200 I 117 §Ig 234 196 . -066; '
v 3 o0 i 6,800 | 8o 1 509 240 636 | COZLBON
L 4 1200 | 8,000 |, 34 653 | 216+ 852 oge7 f
I 5+ 8o . 880 - 28 ' 681 | 140 062 ©303
6 1 300  guoo . g ' 6go 1 54 o040 Oyt

! 7 ¢ 100 , 9200 ; 4 ' 604 i 23 107:4(}" ‘o7

c1ov4  ERFe - —
/ {7

!Totali.gzoo | 52,100 ! 6g4 | 4478

Hence 6o4b+ 1074 =92008 |\
and 44*;83)4:5158::52,ch”
giving a=-2407 } v
b=1-6428]
The graduated ratgs cap i}]}%@iﬁg:ﬁqulatcd and the usual tests for

5 ) .
adherence to data carried outaThc graduated rates arc shown in the last
column shove. 8

12. Example of th‘e\}f'fest.

The applicatibn? of the x* test to a graduation by curve-fitting
presents no special features, except that each constant in the
equation “(oﬁnd from the given data results in the loss of one degree
of fregdom.

:E(gi' instance, in the example in the previous paragraph two
...\éfégfees of freedom were lost as @ and & were found from the given
\ data,

We should therefore proceed in amalgamating the data for
durations 6 and. 4.

Since the number of cells is % and two constraints have been
imposed there are five degrees of freedom,

The value of x? at the foot of the fast column is -570 and when
there are five degrees of freedom the probability of obtaining a value
equal to or larger than this is about -g9. T'he fit therefore seems too



THE N.H,I, TABLE : 237

good to be true, due no doubt to the fact that the question is artificial
and was not based on actual data which, by virtue of the case, would
have included sampling errors such as are met with in practice.
No actuary, however, is likely to reject a graduation by a formula
method hecause the fit seems too good.

: Gradus Fxpected' Actual o
n E, ated with- | with- . (8)—=(3) | (5 | Eubuts : (67
rate g, | drawals | drawals ! P
(1) (2} &) @ | ® (6} (5 - @)
o 1600 14635 | 2344 | 249 56 | 3174 | 2001 \'15?
1 1800  rogrr | 1640 | 162 —20 . 40 | 149708 027
2 18oo | ‘o661 I11G'0 117 | —20 40 11;1‘*1’1,; -036
3 1foo | -0318 82:9 8o = -29 84 |, :‘23'6 | "307
4 0 reco | ogey | srz losa o 28 | 78enge | st
5 800 0362 | 2970 28 | —ro | oM 280 036
6,7 400 ; -o306¥| 122 13 8 ..\\.‘6 . 118 | o3t |
Toul| g — | bo=7 | b+ | OV = | 7 LT

13. 'The N.H.L Table. .j.’j?

e Nationa Hlealthringusaggs Act 1911 2
males separately) was required for
The table was based on the re-
years 1go8-10

For the purposes of th
table of mortality (males and fema
the calculation of Reseryd Values.
corded deaths in En l@éxd and Wales for the three
and an estimated pepulation as at goth June 1909. .

"The results gfithe Census as at 31st March 1911 were not avail-
able, but an'eistimate in decennial age-groups was provided. E‘he
require ﬁ“gﬁfes for zoth June 1909 were interpolated from t eﬁe
figuresé@nd the corresponding figures for tl.xe 1901 Census on the
ass,lkrﬁﬁtion that the numbers increased in arithmetical progression.

\m vFhus the 1909 figure was taken a? .
population 1goT + 823 (population 19¥1 — population 1901).

'The figures operated upon were not the usual grouped popula-

tions and deaths but the popu]ation atagesx and over and the deaths

ver as used in plotting an OgIve curve.

: 0
occurring at ages x and in the part of the Report

The processes used are very clearly set out

the exposed to risk af durations 6 and 7 the

* i i
Allowing for the weight of s token as 1 0315 + % 0278

graduated rate on amalgamation W
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which is reproduced in J.I.4. Vol. xLv11, pp. 548-39. The rcader
is strongly advised to study this extract, which explains both the
theoretical and practical aspects very lucidly.

14. The OMI, QM) and QM Tables.

The O™ table was based on the experience of whole-life with
profit policies over the years 1863-93 and has a sclect period of
ten yvears, The ultimaie part of the table is therefore somctur\s
called the OMa® gable,

The OM® and OM tables are both interesting in that £he full
select period of ten years used in the O™ table was_abinidoned.
For the OM table, sometimes known as the O™ aggregate table,
the data for all durations were amalgamated, wHild for the OM®
the experience for the first five years after ¥n¥ry was excluded.
Thus the O™, OM& and QM tables differ ffem each other because
of the exclusion of data relating to the ¢afly durations.

The ONM table was based on the¥xperience of whole-life non-
profit pelicies over the years 1863 93. In this experience it was
found that a select period of ﬁv’e years was approptiate.

The QMI0, @}%Hhmilithpauitl@ﬁaﬂ@ portion of the ONM! tables
were all graduated by Makeham’s formula with log,, ¢ taken as -039.

For the select portigntof the O table it was found possible

to assurne that \\ gy = A+ B0,
where A; and Bj ake in dependent of x.

For detaifi\fle reader is referred to J.1.4. Vol, xxxviil, pp. 507
et seq., ;‘f‘p:h)'duccd in Reprints 1935.

15. R'§n‘raduation of the O™ Table by Makeham’s formula.
\’T he OM table was not graduated by Makeham's formula. For
\' ‘specml purpose Mr G. J. Lidstone re-graduated it by that formula,
although he realized that a certain amount of distortion would arise.
The method used is interesting in that it was not necessary to refer
to the original data; further, it had the merit of giving speedy results.
Its use should, however, be restricted to the type of problem for
which it was derived and the graduation of rough data should be
carried out by the methods previously deseribed. Mr Lidstone put

cologypp, = o -+ e
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and took ¢ values of cology,p, from the OM table that he was
re-graduating.

He then used the following three equations for finding «, 8 and ¢:

& ¢ —1
. s
2 COICH g Py = 40% + ¥ - — —,
Fe= 25 c—1
03
4
o — ——
61 4
- ol g N | e—1
XZ‘ COI{.}ngpx:‘q._'_‘T‘ w“+ ;8":25 - _——
w=i5 2 c—1
g
and 40&0-—7:\
40X 41 (A0 c \ L%
64 1
O X 4I X 42 . 2 -1
33 eolo A0 X 4L X 42 o 2 Y ,
Ll logy P, 2%3 +8 PRy

where the successive summations of the tabular v&LQés’ were taken
for ages 25 to G4 inclusive. This was the rangebf'ages for which it
was desired to fit the Makeham curve; highc\f\z}ges were relatively

ununportant, D\

16, ‘The use of two curves. Blending.)

Often, particularly in recent yp,afs} it has been found impossible
to fit a single curve to the whké'oflbhecditapnitheygh one curve
may have been satisfactory atthe younger ages and a secor}d curve
at the higher ages, Clearly'such a graduation is not as satisfactory
as when a single mrw'\is, used; it has, however, the gre_at f‘d"amf_lge
that the rates progxcz\ssz smoothly. The chief difficulty is in passing
from one curyesto™the other and this brings us to the question of

blending aﬂd\?ilé\ndéng functions. ’

17. Bleading functions.
Su}f.’f’O\Se that a curve has been fitted to the data at the younger
2268, Biving graduated values
V wf, uly .l UGy e Usp
and a sccond curye at the higher ages, giving graduated values

B
B ] b,
UL gy Ulrgy oee Ys1s M <o U

In other wards the two curves are assumed to overlap and there are
two graduated values for

Hp1y Hppps - Be-1r .
The problem is to combine or fuse these two values in such a way
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that the final values pass smoothly from the first curve, which gives
values up to and including «¢, to the second curve, which gives
values from # onwards.
Assume that a typical blended function ), is given by the
equation
Up = Kp g U+ Ay Wy veeen{10)

where «,., and A,,, are not constants but functions of ¢,
If u;,, is to be a blend of varying proportions of the two %S e
make O\
Kr-l—f+)‘rL£= I. ..‘\”..'(20)

Also, in order to make the blended funetion mer 2¢ ’wuh the main
graduations at each end (=0 and t=s— 7), we h\ke

K,=1, A, -O}

kom0, A1) D veennn(21)

D
Between these extremes «,,, should dbarl}, diminish steadily and
Ay increase; and it is usual, though Hot essential, to make

. ;. )l —# e (2«2)
www.dbra uhbrc—m_y 01‘g in
Inthis event the values of AdE®merely the values of « in reverse order.

w4 (and therefore A, should be a continuous function. urther,
since it is unity if £ i§%ero or negative and commences to diminish
as ¢ becomes po%{\:e, it is esscntial in order to make a smooth

t

transition tha.t , and

preferabk\‘ ”H, should be either zero or small for the same value,

80 tha} the blendmg curve has little curvature at either end.

T'o produce a smooth transition from one curve to the other the
® fange of values over which blending is carried out must be fairly
large. Much will depend on the differences between the pairs of
overlapping values and also on the differences in gradient and
curvature of the two main curves at the ends of the blending range.

18. The curve of sines.

A natural blending function is the sine of an angle because of its
smoothness and the zero gradient when the angle is a multiple of 7.
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fn order to make «,, unity when =0 and zero whep t=s~1.

we put 14 J ' im
xr+,=;l1 +51n( +.\-—_r)}
:—1 jI +Co til}
21 s—7]
] e | Foo aeaees (23}
Then Ak =:;{I —cos =~
Hence As,i=£{1 —cosgs—.r—.—;t-)-f} A
- NS
- :0\\ o
=-1jr+cos—tLI g7
2| ) ON

= Ky W

The values of A are therefore the same as thewalaes of «, but in
reverse order, p \, '
We can therefore concentrate our attentw(mn Koo
d 17 £ Nz

— K, = — S —
T 2SNt ST

and vanishes for the values t—\g\ﬁvgddﬁra Wlibiary.org.in
d* L 2coq-tﬂ-
Er2Kr+t<\ a\s—7 Ts—71

- _T5_ approximatcly; when

\.I 2
When t=0, this bec\ﬂ\leb
s—7) (s P

t=s~—7, it has the,same mlue but the opposite sign.
Prowded that s —7 is fajrly large (say 10 Of over) the curvature of
the blem{m,g “4unction is therefore small at both ends of the range.

19. T\lﬁ curve of squares.

-~ *;]\,‘he curve y=rx*isa parabola 1f « is negative the position of the
Netirve is as in Fig. 4, W hile if x is positive the position of the curve is

as in Tig. 5.

rig. 4- Fig. 5

Frasiil 16
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If we take the section AB of the first curve and run it into the
section CL of the second we abtain a curve of the form

naC
n N\
which should be satisfactory for blending. \~\
a :. \
To do this we take \ >
1_ N’
=T — 2
Krg=1—12 e ‘ for the poruon\{%b’ (24)
VIR ! when t<4 Efw-cﬂ T
4 =2 |- -
A IR
. ; v o \:
and g=2{1—— \% ;
It Koy ( I §— ;rJ 1}?@%}&10 pOI'U.On ch

: ¢ 34" when tzd(s—v)
Ay=1—2]1 ——,‘3 ‘1
JUAHANS dbraulgbr’ai y.org.in
It will be noticed thag, as“bcfore Ag_¢= 16,14, 80 that the values of
A and « are the same ubin reverse order,

x,; decreases f@nmt& when £=0 to zero when t=s—7.

/ ¢
Lrn & Iftm_ 3(s—7),and thercfore vanishes when = ¢; and
dt (s 1}"\ /
o3l £
KET'\;\%_ (I - ) if 2= %(s—r), and therefore vanishes
, §— s—r, -
,1‘;\\ when (=s—7.
.
o _ 4 when #<} (s—r) and + 2 when t=3(s—r)

(s—
Here again a reasonable value of s—7 will make the curvature
quite small at both ends of the range.
When =3 (s ), i.e. at the point A or ' in the third diagram,

#,4¢ 18 continuous (value 1);

d g ( ) 2 )
is continuous { value —- <},
dirh \ Sy
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d? 4
d_zghrH“" _ES__?TQ’
whereas for the curve CD,
d? 4
P (e
IFrom the theoretical point of view, therefore, the curve of sines,

which is a natural blending function, is to be preferred to the more
N

For the curve AD,

artificial curve of squarcs.
in practice the usc of cither method is likely to give sigiilar

results, O
20. Polynomial blending functions. A0
The polynomial . —a+bt+c+df* m'\ -
can be used as a blending function if the values 3t'a, b, ¢ and d are
found as follows. 9,

Since «,,,=1, whep £=0 and o whep Fu—7;
g=1 and a+b(s—7) 4;'5:(,9:2 P4 d(s— r)? =o.
. d AN
Also, since #p4=0 at botfy@éﬁ:@ﬁ&hﬁﬁﬁg&%;.g_m
b+2ct+ 3d12“:<o, “when t=o0 or s—T.

Solving, we find th{{f

/

oo (26}

X it
Enally, ;’I?‘ Kppg=2C + 6dt
:..\: 3 3
\w\:”' =—ES£)2, when t=o0
6
and =G when t=s-—7.

T'hus the curve of squares and, still more, the curve of sines are
superior as regards curvature at the ends of the range of blending.
Nevertheless as a natural, instead of a hybrid, blending function the

polynomial possesscs certain advantages over the curve of squares.
16-2
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21. Modified blending functions.

In using a blending function ., for values of ¢ from o to s—7 we

are in effect assuming that ., is unity if £ is negative and zero if
I-‘ « .

a ;- L1 J.- ) - i
t1s greater than s —r. Hence we must take care to ensure zero gradient
and small curvature when the value begins to chunge

L1

In T'ables XXT1T to XXVI the values of the functions for £= —
and £=13 are inserted to illustrate this point

In order to ease the junction with the main curves some writhes
prefer to effect the blending from

N ¢
D))
=% to t=s5—r—1,

“ \/

. . N

L.c. over $ —# — 1 values instead of s — . A\
1'hus

'\’\.
Kepr=I, K. 470, \S
d

JE Ky =0 if = ri_,-
_ ¢
I'he following values of «,., result: N\

o )
curve of sincs: t1 L oogi=— i’
www.dbrflibr ar}r.E"Tg o
curve of squares:

Ovye o
_Q(EK”_I)Z it ot (s—7)

R
‘\,I' s—r—1|

or {

pOIYnO\\mié;éw‘ s { t—1 t— 7 )2

F—F- 1

Ta‘ble XXVI1 shows the values for the curve of squares when
.s\ =12, The values Ay and A2, will enable the reader to

judge to what extent the junction with the main curves is eased by
shortening the blending range.
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Table XXIV, Blending function—

Table XX 1L Blending function—
curve of sines

Kr+£":1_2'(

curve of squares
(s—r=12)

AL

=)

when £ $(s—1);

t2
=1,

T2

—_f = 2 __£2
(s—r=12) Pcr+£:2(1___t) _(12- z) A
1 b ) 72
KH:EI:I et when 34 (s—m}\
a)
t I s | e | Adk, ! z ey | Ak ':l _\ﬂ“x',ﬂ
(—r>|(: 000) T oo [t=n| oo} (DT o)
(000} \(geo
o I-000 (—-o17) o | 1000 | {—-014)
—-017 \\« —-014 |
1| -983 —-033 1| ;g@& —-028
. i —*0s0 ‘ : —0q2 !
z | 933 | —ez9 R . 027
—-079 | NN | 969
I 3 854 _.Oa‘.sww’.abl’:atﬁi%)raigj%ré in —-028
—-104 | N\ ! =097
4] 70 | —afn 4 8 028
12T | NS | —-123
5 629 008 5| 653 | —-028 |
19, | —153
6 | ‘500 \)~' — QOO | 6 500 000
: L OT29 | s
2 andd ++008 T U347 ++028
NN =1 ©o—rIzs
8 z%o +017 8§ 222 | +-028
¢ \) — 104 . ‘ —'097 g
avd 140 ++025 *] *125 4020
\»\? ¥ —-079 ' P—-obg -
i 10 -0b7 | +-029 1o o056 i +-027 ‘
! — 050 . — 042 :
| 017 +033 11| 014 | +-028 ‘
—-0I7 [ —rel4 |
1z 000 . (+-017) 12 000 ‘ ‘ {+-014) ‘
(-0ac) | ' i {(-oo0) ! |
(13) { ooo) ; (-000) ; {(13) . (000} | | (-000) |

For cxplanation of figures in br

ackets see p. 244,



246
Table XXV, Blending function—

GRADUATION

‘Table XXVI, Modified blending

polynomial Junction—curzve of squares
(s—7)=12 (s—r=12)
AT A ft-. 152
Koy =1—73 E) +2(I--£ xmzz—z(? ] vhent < §(r—7)
DA & £- 3°
=I—— ] = -—1, he iz '-I:' LY,
4556 Koy =2 (( = ] whent = & (s47)
J f !i ", t. ,_\K;‘,._‘_l |_..\i<,,_g_| i frpe A, |~ :\. It il
‘(—1)'(1-000) | (ooo) |(—1) {1 ooo) “K (ooc)|
(000} | _ doct _
‘ ¢ ‘ 1000 l (~020) ‘ (c) (1- oou A {— »ooq.)i
. : . —r020 | P - -coy) :
p 1 ‘ 980 ‘ —014 | ‘ | ’9\9(} ' ( —-020)
| —r034 ! .\ =033
2 g26 —-028 ‘ g g6 ! -'G33
‘ J - 082 ‘ . ;"J 3 —-ofih ’ ;
3! g oo W\ gy | | —oss |
—1e3 N =099
4 741 wwlwx;gi aﬁli%{%y.ﬁig-ifﬁ 798 | . ‘ —-033 ‘
—_ 7 N . ! . I -_ s
3 624 D toby | | 51 6060 S
—'124 "(’ ! I | —-rfif | . I
6| ‘300 XN 000 L6 ‘ 500 | » 000
. TIg | ' oI
76 6\ 4oy | T334 ‘ | +-o34 |
) :‘;\ oI I':; . 132
8 259\{\ 014 ‘ 3 ‘ z0z +-033 ‘
. '§»'_ ~103 | | —099 |
g L A\Ish | Tro2r 9| -103 +-033 |
AN —-082 ' : — 066
<\§ow' 074 ‘ + 028 ‘ 10 ‘ 037 ‘ +-033
/ —'054 ' : —033
11 | o020 +034 ‘ It - -oo4 . (+‘029)‘
§o—r020 | ' _ | " —004) ! ,!
12 -ooo ‘ 1 (+020) (12) ' (000}, (+-004 ‘
| (000} | ' (000}
(13)" (-000) | | (o000}, (13)! (o000} : { ooo)J

For explanation of figures in brackets sce p. 244.
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98, TLimitations of blending—alternative methods

Fig. 6. NN

4 ~Nx\ ‘
Fig. 7. ()Y
AN . .

Blending can be relied upon togwve good results if the two main

curves do not intersect as i%ﬁ?‘gg'?&ch%u‘ﬁﬁ??e y}%g%ris%ct twice as in

Fig. 7. The curve represenﬁed’by the dotted liie £F should have the

Sazﬁe tangent as D at E{ﬁnd the same tangent as A3 at F.

In the second inst{t’@:e}thc curve passes through 4 and B.

2O~ D
x:\w’
\i"\;‘.
N
{ \";v /
g A

Fig. 8.

 When the two main curves intersect only once, as at the point O
in Fig. 8, a blending process is unlikely to give the best resu!ts.
A good blend is indicated by a curve such as EPF, but any blendl.ng
process normally employed makes the curve pass through the point
of intersection O and drags it out of its natural course. (This does
not apply of course if there are two points of intersection.)
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Generally speakin g, therefore, when the two main curves | ntersect
only once ncar the point where blending is to be effected it is pre-
ferable to pass from one curve to the other by a process of esculatory
interpolation. ‘This process is described in Mathematics Jor Actuarial
Students, Part 11, Chapter VII, and will be met with againin Chapter
X of this book. Briefly it may be said to be a process of interpolation
which ensures a smooth join at each end of the interval in whichthe -
values are being inserted. .

¢\
23. Offices Annuitants Experience, 1900-20. The ¢ (myand’« (1)
Tables. ~\ by

The rates of mortality adopted as a basis \\-'(::I‘ﬁ’t(}bfélfﬂed by a
process of extrapolation from the rates for thea863-03 experience
and those for 19o0-20. They were therefore firly smooth without
any graduation, but apart from the desire f@(r\}ﬁbre places of decimals
it was decided for reasons of practical-enivenience to atiempt to
fit a Makeham or Gompertz curve ta the rates,

The problem was more skin tovthe re-graduation of an cxisting
table than to the graduation of téugh data. In any cvent the exposed
to risk and deatherfor e NS Y- Wb did not relate to the extra-
polated rates which formédthe basis of the tables.

The constants wete) thercfore found from the rough rates
(colog p.) and not@‘rcference to observed data,

More than oné jzitternpt was made unsuccessfully and for details
the reader is\Féferred to the official report, The Mortality of
Annuz'tmg;‘,@}éoo—xgzo.

"The function operated on was colog p,, which was assumed to be
of the form A + Bee. A and B therefore have not the same meaning

_ag'the constants in the formula for .
. The methods of graduation {inally adopted were as follows:

~

Females. A Makeham curve was fitted to the data at ages 55, 60,
63, 70, 75 and So.

"This curve gave good values also for ages 50 and 85, but at higher
ages it overstated the mortality as had the other curves experimented
with,

A second Makcham curve was therefore found which would
reproduce the values for ages 8o and 85 given by the other curve
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and also give a value for age 100 approximating to the ungraduated
rate at that age, The constants were found direct from the three

OFFICES ANNUITANTS EXPERIENCE, IQO0-20

equations

colog pgy = A+ Bc™ ‘.
colog pgy = A+ B .
colog prgo=A+ ch"_,l

The two curves consequently overlapped over the range 80-853

and intersccted at each end. A blending method was therefore O\
adopted. Ages last birthday were used in the investigation and it was
found that on the average the exact age exceeded the age lastRicth=
day by 41 months or +375 year. The points of intersecj:ig{l‘of the
gradusting curves were therefore given by exact agesydo-375 and
85:375. AN,
y 85375 — ¥\, F
This accounts for the factor (—33155— ) m\the following table,
| 2,3
which shews how the blending was eﬁ"ec‘tct%‘ ™
| Table XX
; i ' ™ '“Adjusti.ng ! Blended
. LN . 31
‘Exact’  Main Old age | Diffesenst dbratiiibraryion@)in(s) value
age x | gracduation | graduation {314z} 8_53_'?5;-’;5 ‘ (3} —()
26 5
@l @ e @ ® | ©® @
Si opisay | opsasy -ooonsg | 7086 [ ooorby | osSd
' 82 | -043159 | 03006 | ‘000747 4556 000340 | 0435
83 o 48383 N \0 49286 -000503 -2256 000204 | '049082
8 | -05428§7) “oss057 | 009772 o756 | 000058 | "034999
83 ‘06}@152' '06331_ -000282 ___'°£56 '000002 | 061232 |

.’Mé?-‘-’s- As the preliminary tests had sugges
“graduation it was assumed that

N\

I Hence

and

colog p,= Be™
log {colog p,.)=log B+xloge,

Zﬂj log (colog p) = {27+ 1)log B,
—n

for an odd number of terms, or

=2nlog B,

for an even number of terms.

ted a Gompertz
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Also > xlog(cologp,)=loge 3 &% venea{28)
1'aking the origin at age 75 and using 5 years as unit ihe work
was as follows:

Table XXVIII

S

i %ge |‘ log (colog #,) | # [ # log (coloz J’JJ I
; Il ! + - I N\
5o ! — 2360 | -3 l 11-8z0 A+
55 0 — 2213 —4 8852 N\
! ; ! e\ i
6o | —=zo13 | -3 1 bogs )7
65 — 1850 | -z | 3700 AN )
50 i - 1hgg 1-(}99.'}“\ ’ |
75 | ~— I'joi l o AN - :
8o i - 1283 I N\ 283
85 ¢+ — 106 2 N 2212 |
Lo —ogs 3 {C 2835 |
Loy — ot NS 3072 |
- I B 265
- - _...7;;%:__ g . _!
i I — 16313 .,s“ N i g2egh— 12207
| wiww.dbr aullbpqry‘ org.in =19-829

The equations for .B\@\nd ¢ were therefore
I1 logB\Ba Z16-313 or logB= ~148300;

and since 3‘"’ ni=a (124224 32+ 4%+ 5% =110,
equatmps({;ﬁ) became

‘,’g\ 11ologC=19-829g or logC=-180204,
where C'=27,

\Hence log ¢ = 03060528,

This graduation was unsatisfactory, and an attempt was made to

fit a Makeham curve by using the equatlons

‘> colowpx (zn+ 1)444—13 ...... (25)

—¥

and Z xcolog p.=B E xe®, e (30)
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Taling 3 vears as unit and C=¢€5=1'58 the work was arranged

as follows:

Table XXIX

Age i colog by | n | n colog Ba o nC® —l
| ' - + -+
30 r0c43b | =5 ‘02180 ‘102 510
33| roobiz ! —4 02448 160 -640
59 | -ooghh  —3 02898 2540 762
63 corqrz | —2, 02824 dor i 8oz
<0 | '02000 | ~—1I {02000 633 | 613 A\
75 03152, O — 1000 | — O
Bo  -og5208 1 -05208 | 1°530 : ‘,,i;5\80
83 | ro7831 2 -z5662 | 2490 ': A 4f’99; i
go | ~11351 | 3 34053 | 3'944 (V832
g3 "I17070 4 68280 | 0232 24928
10D | 26700 3 1-33500 g-é&;‘;\: 497235
_ Rkt . — 12350 +2'56703 | 264640 | 37347 T92°507 i
ST T M B &
The equations for the const@;mtﬁ{?&ﬁ&%; gePTCor g in

8g-2208=2'44353
This graduation was alsg bns
been reproduced to sh w'\LO’W prac
to emphasize that to Find the const
to risk and deaths Were used.
Eventually gne/Gompertz curv
and 70 am%:. econd Gompe
Actualiy'the first curve was conti
y o, 50 that the position was as shown in I
log (colog p,)) were made to relate
mption as before and were then

shewn in Table XXX.
n column {2} is 3 and the other entrics are
of this value. Column (7) represcnts the
to the values of Graduation [ for ages 71-73
be made from the values of Graduation 11

carrjiediback to age 7

“"Ble rates {or ratber values of
on the same assu

to exact ages
blended by the curve

The central entry

b k) 7
T 160 1O 10 and
additions to be made

and the deductions to

for ages 76-80.

2
10

of squares as

i

agd‘j 1.4+ 266498 =76738.
uccessful. The above tables have
tical work should be set out and
ants the rates and not the exposed

o was fitted at ages 30, §5, 60, 63
rtz curve at ages 80, 85, 6o, 95 and 100.
nued up to age 81 and the second
1z, 0,



Table XXX

GRADUATION

' . log (colog p,)

: i il : ] | Interpo-
iAgc ‘ Factor | (}'a%or} ‘Crlt[u a- | Gradua- ‘ ]_llgfcr- egtl:if(;-}r. | (lélotfsg];; .
_ o tion L tion [I . ;

LD (=) ! (3) () (s} (6] &
I 0707107 ! 005 23307 | 238432 | 03362 | ‘00027  2-33007 i
.72 2121321 ‘ 045 ' 3044 | -41944 1 -03504 00248  «36BES |
73 °3535535 ' 125 - (3981 1 454506 | -056406 ! 00700 40316:
744949749 245 | 4318 48968 | 03788 1 -o1418( 4508 |
75 6363963 103 4655 1 52480 | -05930 | 02402 48652

... i qo710bG 500 : O\

76 | 6363963 . 405 | ‘4992 - 55992 | -obo72, (262459 53533
77| 4949749 - 245 "332G 59504 | ‘06214\ 01523 37951

78 1 *35353535 . 123 3666 63016 | 06336 : co7gy 02221

g | -212I32T  r045 -boo3 . -66528 @6498 oozgz 66236

8a | 0707107 | 003 ‘6340 06640 00033 70007

A

The rates at ages under 5o were ‘not tak(,n from Graduation I,
which gave very low rates, but \were armnged s0 that they ran rcason-

ably as compared w1gﬁlﬁl I'P e Tdtes.

24. Government Lifé Muitants Table, 190020,

Because of the [h\z}ctical advantages where joint-life functions are
concerned an attempt was made to fit a single curve to the whole of
the data. 'l‘hisf however, was unsuccessful. The rates at young ages
were very {ow, particularly for females, and increased slowly up to
age 7Q§n& from age go onwards,

B(;m een ages 70 and go the rise was fairly rapid.

‘As with a Makeham curve the accumulated deviations were too
\ ‘large to be ignored, the double Gompertz curve, for which

cologp, = Ma™+ NI*,

was tried, but although a fairly good fit was obtained for the female
experience between ages 50 and go the constant # was less than
unity. This meant that the sccond term had little effect over age 70
but made the rates below age 46 or 47 increase with a decrease in
age. 'T'he male experience was still Iess adaptable,
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Finally, the following methed was used,

Males. A Makcham curve was fitted at ages 44 t0 70 and an
ordinary Gompertz curve at ages 64 to 89. These curves intersected
once only at about age 65 and had to be blended over the range 61
to 6g inclusive. |

The curve of sines was used with K_é (1 L cos ?%), but as was

to be cxpected with the curves intersecting only once the results
were not entrely satisfactory. It is understood they were sub-
sequently hand-polished to produce a better transition from ofiy
curve to the other. O

At ages over go the agreement with the crude rateg‘xﬁgs’ un-
satisfactory and an attempt o improve it by re-ca{cillating the
constants of the curve merely produced distotidn elsewhere.
Finally, the limiting age was taken as 103 and the'rates for ages over
go were inserted so as to give a rcasonab]{ﬁgfeement with the

P

ungraduated rates. "N\

Females. A Makeham curve was ﬁtted at ages 40 to 67 and a
Gompertz curve at ages 65 tow86~a'bThe_c1§rves intersected once
between ages 66 and 67 and t\“laé,\‘fdver gf)l%)libﬁga%ﬁi&‘l?}f cologp, at
ages 63 to 71 were blended higrghe curve of sines as before. The same

difficulty arose at high @ges and the rates at ages over Qo were

inserted in the light “of ‘the ungraduated rates, the limiting age

being taken as 19557 i ]
To produced fable extending to young ages, English Life Table

No. 8 was, Qs;c\i (males and females separately) to find values of g,
for ages«%axid 25. The values for ages 45 and 46 were taken from
the tjna"i:n graduatior, thus ensuring a fairly smooth join.
. {hwas assumed that ¢ at ages under 40 was a polynomial of the
Sthird degree, and the rates from age 0 to age 44 Were inserted by
assuming constant third differences.
gs (from English Life No. 8) =1,
— (1 +20A + 190A2 + 1140A%) u,
= (14400 +780A% 4+ g880A) uy,
— (1 +41A+ 82082 + T0660A%) 1’

a5 ” »
qas (from main graduation)

Qs ” ' »
whence Aug, Aty and Al were found.
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The rates for ages 5 to 10 were assumed to be constant, although
the third-diffcrence curve produced a slight dip at this section,

25. Curve fitting. General remarks.

As used by the statistician the term “curve-fitting” s usually
applied to the process whercby ohserved data {as distinct from ratios
such as rates of mortality derived from the data} have a mathe-
matical curve fitted to them. There may be a variety of reasogs for
such a step, but we need not consider them in this book, O\

A very common example, viz. the fitting of a normal-ehrve, has

already been considered. It is only necessary to find\Lhé mean of

the distribution (which is taken as origin) and the stand ard deviation.
Another typical example of actuarial cuwe-ﬁifﬁ?g is afforded by

the National IIealth Insurance table mentiohed on p. 237. lere a

mathematical curve was fitted to the exposédto risk in ogive form.

The actual deaths were then adjusted‘s&a’lé to leave the group rate

of mortality the same as before and ﬁ‘nzifly a curve was fitted to the

deaths so adjusted. R\

The most important curves for fitting to statistical data were
developed by Kt PERFONART Y &IBAL name.

I'hey arc solutions ofhe differential equation

RN
OV wva
NG dy b aw g did

From the Qaya:ﬁ;iblc data constants such as the mean, standard
dcviation,' p\igasures of skewness, cte. have first to be caleulated.

The theosy underlying the rcasons for these calculations js too

involyedfor discussion here, There are many excellent books dealing

sp\chi‘ally with the subjectand the reader is particularly recommended
mboread Frequency Curves and Correlation by Sir William Elderton,
twhich deals very fully with the practical difficulties likely to arise.
It will be sufficient here to mention bricfly two gencral methods
of approach often referred to in actuarial Literature,

26. Method of least squares.

Suppose that for a given value of the variable (e.g., the age) the
difference between the observed value and the value according to
the curve fitted to the data is e. Suppose further that we can obtain
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ameasure of the standard deviation ¢ of all the ¢'s if 2 large number
of values were available instead of one observed value.

We then have an observed deviation of € with a standard error o,
and if the normal curve applied we could say that the probability

€
of an ebscrved crror e was ke 277,
This would apply at every value of the variable, so that the com-

bined probability of a whole set of independent errors arising would
z r—: . . 62 . I N
7 and would be a maximum if 3 s were 2 minimuomm { )

be we

A\
Conscquently the most acceptable curve fitted to the datay iyer the
one which produces the most likely set of errors or discrepancies,
: 2 A I ‘.,' &
would be the one which made 2 ;—3 a minimum, « N \
This is the basis of the Method of Least sgktarbs.
F. M. Redington has suggested (/ ‘S:S:\Vol- 1v, No. 4) that
s we cond instead divide by the

instead of dividing cach ¢ by t
valyef the function, ie. the value

square root of the “cxpected”
given by the curve. N

That is because o is usuallyg¥tte Espulippaydin astuarial work
Redington points out,
e wide of the mark.
roduced are not

is very nearly ng, the “ex &oted” value. As
however, some of the dsumptions made may

Tn fitting a math&mtical curve the errors € D
likelv to be randoreand to follow the normal law, .

C;mseque tl‘y\theoretical niceties are out of place; it is quite
usual to agevme that all the o's are approximately equal and to make
Ye? a miimimum,

"Thcoretically this is simple.
’“\:?-e\éz is written down in terms 0
wécordin g to the curve.

f the observed values and the values

A+ B :
. . W Tt
For example, in fitting the curve g7 711 e* we should write
: A+Bf__}2
LeP=2 {“x TRerar1+ Do
where 1, is the observed value. g ontial
To make this a minimum we equate to zero the partial di terentla.
cocfficients with respect to 4, By £ D and ¢, thus producing five
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equations for the five unknowns. The practical side of the whole
subject is, however, much more complicated than is apparent from
this brief outline.

27. Method of moments,

If f, represents the frequency with which a value & of the vari-

able is obscrved it is a relatively simple matter to calculate "t\he
successive moments, \
= zxfx _ Engc _ ZT%f.r 4 '\:\'

iy X, s Ha Lf,c » 3 Efx s £\

. N\
ot
"
L

where the #’s are measured from the mean. D

If ¢, is the expected frequency with which"ﬁ}e value x occurs
in the curve to be fitted, the successive momests can be calculated
in terms of the constants in the equation r?f.:t}ﬁ': curve. ''he constants
can then be found by equating the suuf:’%sivc moments,

Suppose, for instance, that it is dedired to fit the curve A+ Be*
to a set of values of 4. \\

The equations would be 3%
www.dbraulifirary org.in

0'0

Sp, 2344+ SR veeee(31)

pp, =2 Ax+ XBxer, .. (32}
)"

SOZau, =S Ax2 £ TBxcr, (33)

A, B and ¢ chprthen be found from these equations, which are
greatly simplified in numerical work if the origin is taken at the
centre, \\"

In detwarial work the method of moments is seldom employed
in tljrf:sorm; instead we equate successive summations.

L (OAswill be seen from the following, the two methods are equivalent
\ if the argument « is a linear function such as the age.

Suppose that we have a series of values
T
Uy, Uy, Uy, ... 1, where Su,=N.
i

By summing col. (1) of 'Table XXXI continuously from the end
we obtain the terms
(ot ), (up+ug+... tul, o, (i tu,), U,
shown in column (2).



METHOD OF MOMENTS

Table XXXI
T TR T .
Function ! sumilil:ation ‘ Second summation Third sumimation
o e ®) @
2. .
iy gt | uy+ 20t ul+——"u,+-3—4u,+ .
! z
! i n{n+1)
i ‘ 280
; . a1
Hy TS 7 P ST u2+2ﬁa+_,.+(ﬂ—[)uﬁ 1y +— g+ +L£;\Juﬂ
| P\
g Mg ..ty U TU U U PO PPN PP RPPP ST LL I N SUPTRP
‘ ................................... | oo '.'.':'.’.‘:’s' ................
| ! a3 4
U, . 7L R u,+zum+...+(n—r+1)un ufrhw;ii}frrl-
[ .
: : N\ (m—rt 1 (n—r+2)
i : I 'xt\\" + 2 Ha
W
! iy By Uyn ~H:\ n
Eu . .3 r{r:i-“f) 2.3.4 3.4.5
PR TR T - TR S S u1+_2 H=+----,!-%r:,2——“v wmt - ‘”s+‘_ﬁ"“3+"' ‘
F ot N N !
i ! NG nlat D+,
L | by ogn ¢ )
e — i T AN

2\Y
The total of thes i{‘m&n +{n—1
= N'm,, where m, 38
Summing agaif rontinuousty
"\::\'": (u1+2ug+3ua+--- +nuﬂ)’
Y
§§“(ﬁ2+ 2ty .+ (7 1)) -
sho@tﬁ" in column (3).
\\ "The total of these is
n(n2+ I)u,,-}-gi— 1)7

2.3
+...+—2'—'Hr2+'!4',1

— —1
2 1l
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Yttt (n— 2ty gt . T and

the first moment about the origin.
from the end we obtaln

- (u-n—-l + zun)9 s

where 7, is the s
Similarly, it is possi
the first r moments of

Farasiil

RN [y
=3 {}fr :e:,.-l—?rurj > (s + 1),

econd moment about the origin.

ble to express the rth summation in terms of

the distribution.
17
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Since

rr(r+1)..(r+2) 2

EEE ST =S,

1 ! T

I:(H_t) :l‘““ n{nt1)... (n+t+1)
- {ti =- Tﬂ,

the way in which each summation can be written down from the
previous one is obvious, Q

For convenience we have assumed the summations to fheymade
from the end, but it is clearly immaterial whether we do thu. Of, as 1s
more usual, sum from the beginning. A

By equating the successive summations of the ohsu"»cd valucs
and the expected values according to the cu;w:\v.-c are ensuring
that the successive moments about the méah{or any convenicnt
origin) are also equal. NG

The most common example is that fsequt,ntlv met with earlicr
in this chapter, where the successiv¢¥summations of actual and
expectcd deaths are made equak) \It is somctimes referred to as

“the method of moments applied by way of successive summations
of the actual andvwspetiteaulbieryorg.in

The method of momefits and the method of least squares can be
shown ta give identigal¥esults in many cases and on most probleins
likcly to arise in pN\btlce the methods would produce similar values

for the umstag’ss:
\</

28. dmt:ages of curve-fitting,

‘THesgreatest advantage is that the results are idcally smooth, a
ver} “important point in rates of mortality to be used for valuation
“\purposes and the construction of premium rates,

The use of some mathematical curves, notably Makeham’s and
closely allied curves, enables the calculation of complicated func-
tions to be simplified greatly.

The method often throws considerable light on the way mortality
is changing {rom one generation to another and may help in the
search for a law of mortality.

In finding the constants of the curve it is usually an easy matter
to allow for the weight of the exposed to risk at each age or age-
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greup. Thus, although only rough weights are used in finding the
i.\-'Iakeham constant ¢, the exposed to risk and deaths can be used
ir. finding the other constants 4 and B.

Usually the total deviation {actual deaths — expected deaths) and
the accumulated deviation are automatically made zero or very
small, so that in the majority of instances a satisfactory fit should

be attained.

29. Disadvantages of curve-fitting.

Tt is very difficult, particularly with modern data and the heterd-
gencity involved, to find a suitable curve. Once this has beé:n\ done
subsequent work is largely routine and automatic. IiNpractice,

many attcmpts usually have to be made and quig}f'\I‘céults can be
produced only if one of the earliest proves iQ %) successful. It
was partly for this reason, the desire for quick results, that the
A 192429 data were graduated by 2 'suquxlatmn formula.

It is doubtful whethera single curve banever be fitted successfully

to heterogeneous data. N
20. Conclusion. yk«fx&_d braulibraty.org.in

The whole subject affordsa vast field for resgarch and many
functions such as dx,’t‘hé\number of deaths in the crude meortality
table, have only recently been the subject of experiment. For many
years, owing to themsefulness of Makeham's formula, attention was
focused almosbe’xclusively on pg and the allied function cologpy,
but it is, ,Ré§ﬁible that other gxpressions may be used successfully

in t}}?,\\fl'g,tdre.
X \ N
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EXAMPLES g

1. Graduate the following data by means of Makcham's first formula:

JLLT:A + Be=,

! Exposcd ‘rn risk |

Age-group : (in central form) .{ Actual deaths Ii N\

]| 20-2% : [5,750 ! 30 : '\‘\
1 2530 | 15,100 | 40 QO
! 30-35 : 12,75¢ | oAy
! 35740 14,700 ! ba *

40-45 : 11,750 A |
| 4550 : 11,750 LA\ 8o !
j 50—55 i 13,900 \: 9o ’

e = = e .___.__‘ A

‘The data relate to the active service of, erﬁ\im ees of a firm which has
a fixed entry age of 20 and a fixed retlrmg age of 55.

R

“’
A\

Tables of graduated valuesy of g have been arrived at by several
dlfferent methods, \faﬁmﬁlwhldlhbpmﬁlm%wsuhs which are satisfactory
from the point of view of gmoothness. It is stated that the most satis-
factory graduation is thag m\ 'hich the sumof the squares of the differences
between the grdduate‘d\\and ungraduated values is 2 minimum. Show
clearly on what assglaptions this statement is based and how the test is
derived from thes(é’a'ééumptions

Drscuss tlle\pplxcab111ty of the test to mostality statistics generall}
\5

3e BIend the two following series of I, between the values of y =7 and
y=In b}r means of {¢) an m’cerpolatmn formula of the third de gret, and
(bpthe curve of sines:

\.

IR S
! 6 1 167 | — w | o3z | 312 ‘
o7 10 - it fo328 0 363
P 8 235 . 220 12 395 | 420
P9 272, 264 13 | 480

l I A R I S

Why is the usual blending method not suitable in such a case?
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4. The following table shows certain values of g, extracted from
English Life "U'able No. 10 (Males) and the Government Annuitants’

Tables 1900-20 (Males):

T TeaA

| Age CL.Nozo' Ga& Age | EL.No. 1o

39 00331 i oofi3s 46 00861 -00832
40 00502 ooh38 47 ¢ -o0g23 -00869
41 ‘00598 00683 48 'a09g0 'GOgIO
4z cob3g CO7IC 49 -0T0R7 00687

|43 00687 00738 so | -or128 "01010\ )
44 00741 oo768 51 ‘ 01206 i

l 45 00799 | 100799 . s VA

Blend the two serics to obtain values of ¢, passing fI‘OI’I‘I:}hE E.L.No.10
values at ages 42 and under to the G.A. values at ages %8 and over.

Criticize the junction effected and state reasopg\‘for any unsatisfactory
feature. LEmploy an alternative al gel?rfilc pracéss to produce a more
suitable serics fulfilling the same cond.ttlor:ls.t .

N/ T
X

¢. In a mortality investigation jclrgc:?ﬂaita arc presented in the following

form: ‘,»{’\w;w'_dbl'aulibral'y.org_in
Ape-group \:| Fgoid ti rik I Deaths
20-26\<~~': . i
273 ‘
A
7\ i
N\ !
A S L S ——

,’\ Y
) and deaths (A,) have cach been obtatned at

“e3ch individual age x in such 2 form that g, = E'fmez and haf'c then been
Jummed for the age-groups shown. It is desired to obtain graduated

: by use of the formula p, =Ac* + B, .
Wﬂélteast;3 f:f;fv 3?:311 would proceed and what difference should in theory be

made in the procedure if it were desired to obtain graduated values of
m,, by use of the formula m, = A¢* + Be™.

:Né'exposed to risk (E;

N\
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6. You are required to graduate a mortality cxpertence by the formula

.=+ Be®+ De,

The following is part of the experience:

Age last birthday |

111§
16-z0
2125
200
31735

&6-90

g1 and over

! 460
! 994
: 2,312
4,824
7,684

14,600
Nil

Expozed to risk

Deaths

How would vou procecd with the graduation } ’\\
The part of the table given should be used\féi’ examples of the first
steps; no arithmetical wotk on the equationd fermed is required but only
a description of the methods used to hnd th‘e constants,

<N
\

. 2

7. Obtain gradumamdhmmgﬁ;ﬁ;rérémdm the following data:

(@) by a graphic process,
(b) by fitting the formula‘\vrlhdraw\ al rate at duration ¥ =a -+ 5%,

and compare the result\

e
Duration ‘

L >

I‘""‘Pﬂ:ﬁd Withdrawals Duration—r Fxposed !Wi Lhdrawals}
V1zoo ‘ 120 5 i Goo I 27 :
jZotole} i 50 6 | 300 : 20

900 | 45 7 | 400 | 12

8oo ] 43 8 | 350 -

700 ;30 9 i 30 7 |




CHAPTER X

PIVOTAL VALUES AND OSCULATORY
INTERPOLATION

1: Perhaps the method of least general application is that of
pl.\-'otal values and osculatory interpolation, used for the English
Lifc Tables Nos. 7 to 10, This was devised by George King for \
the ﬁrst two of these tablcs and has been used with slight medi-
fications ever since. A good deal of criticism has been diroeted 10
the method, which has been described by one leading statistician
as “‘the highest of high-class cookery”. It should, jHO\’;"f?VCl‘, be
remembered that it was produced to deal with vergspecial problems
and these must be borne in mind in assessing it8 tnerits or failings.
Chief of these special problems were the £t wing:

() The data were the population of ~Em\gl;md and Wales (males

and females separately) and the deaths of the years 1go1-T0 for

E.I.. No. 7 and of the three X)e}ﬁ'S‘fglo-Iz for E.L. No. 8. Con-

sequently very large numqu’;‘ﬁ%éd?ﬁ@ml%ﬁaﬁiﬁpﬁga’n from local
disturbances the progrqgsioh’ was already fairly smooth before

graduation commencedss

(5) Tables werékfequired for spinsters,
r all fernales combined.

(¢) King was-fequired to produce not only rates of mortality for
the consg@bﬁon of a life table, but also a «Graduation of Ages™,
as it -"aé«c'allcd, Le. a tabulation of the population age by age with
inagéliracies removed as far as po

.. () The chief problem to be so
his-statements of age due to a preferenc
numbers ending in 5.

married women, and

widows, as well g8)fo

ssible.
|ved was how to eliminate “local”
¢ for even numbers and

(¢) Medical Officers of Health had been in the habit of comparing
local mortality with that of other districts of of the country as a
whole by mea;ns of the crude death rates, i.e. the number of deaths
per thDL;sand, irrespective of the age distribution. It was therefore

d method should be

suggested that some simple and easily app‘lie hou
devised for their use in constructing mortality tables for districts.
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The problem is admirably summed up in King’s own words:

“In constructing the tables it was desirable that a method should
be employed, simple in theory, easy in application, and which
would produce curves of smooth graduation, and curves which
would adhere closely to the original data’; and

“The table is not intended to forecast the future, but merely to
give accurately the present populations.”

Even in 1911 the data exhibited irregularities due to such factafs.
as changing rates of birth, migration and mortality, Such i ipregh-
larities were inherent in the data and could not bhe rCmQxed in
arriving at an accurate picture of the numbers at each a,ge as they
would have been by a powerful method such as wag ‘used for the
N.I.I table. Tt should be remembered that fcn\the atter tabte
the object in view was a table of smooth rafed’suitable for the
calculation of reserve values. N :

The separate tables for spinsters, w ld?ms and married women
also had a restrictive effect on the chblce of method, because, as
King says: “Under my instructions, it was also necessary that the
graduation should reproduce | the total populat:on exactly, and it
was evidently als‘d“@éﬁ?ﬁﬁ!@"ﬁ'ﬁﬂ% %88 féthod should be such that
when applied separatelv foneach of the sections of the population
which make up the w hole, the sum of the populations of the several
sectionsat cach veaﬁ)}\age should beidentical with the corresponding

© total population.X,

-A summatididormula would have achieved this last result but
would nq,t\'f}}r\?e dealt satisfactorily with the minor mis-statements
of age witich have always been the distinctive feature of census data.

Tﬁé most effective way of meeting this difficulty was to group
the tata quinquennially. Experiments were carried out at each

\ densus since 1911 to determine which grouping was most success-
ful. For instance, 29-33, 34-38, etc., were adopted on one occasion
and 33-37, 315—42, etc.,, on another.

In Chapter I we proved King’s formula

#o= 2%, — 008A%p_,,

giving the central term of a quinquennial group in terms of the
totals for that group and the two neighbouring groups.
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By means of this formula King derived what he called ““ graduated
quinguennial pivotal values” of £, the exposed to risk at age x last
birthday, and 6,, the deaths at age x last birthday in a calendar year.

Itshould perhaps be emphasized that the graduation was produced

(a) by grouping the data quinquennially, and

(b} by deducing pivotal values on the assumption that fourth and

higher differences of the grouped values were zera.

Of these (@) was of course by far the more important. A
{
2. Osculatory interpolation. O

The pivotal values were not subsequently altered and; the ‘inter-
medaiste values were inserted by a process of osculatoryingerpolation.
Any of the well-known formulae such as Everett’s rfﬁght have been
used, but the objection to these was that for eachinew interv?l the
quinquennial values involved were different from those used in the
previous interval, so that although the, ¢urve of values was con-
tinuous the gradient was discontinuous on passing from one
interval to the next. To overcome :thfsi King used a f.ormula speci-
ally designed to make the gmﬁ@i@iﬁﬂb%ﬁﬁﬂpﬁ'}?;or_}gl.ﬁ% method of
deriving this formula, althoughnot the simplest, is mstructive, and
as it usually causes diffigulty the method is dealt with in some

detail in the next pav'\a'gira’ph.
3. King’s formua'for osculatory interpolation.

(N 7 T2 p

Ty

U3

Fig. o

King decided to use a third degree curve for the purpose of

: 1StHr two con-
interpolation over each range of six values consisting of

i four
secutive pivotal values and four interpolated values. As :eol;adh (;n;lle
available constants he made this curve not only p}:.SS tta;n ligrles e
pivotal values at the ends of the range but also touch cer

those points.
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For instance, if the points N, O, P, Q in Fig. g represented pivotal
values of wy, uy, u, and wuy, the values #,,, u,.,, #,4 and tyg Were
inserted between O and P by means of a third degree curve which
passed through O and P and touched certain lines 7,07, and
T,PT,.

Similarly, the third degree curve used for the interval PO passed
through I’ and Q and touched T,P7, and a similar line at Q.

Since both these curves touched the same line T, P7, they touched
one another and the gradient was therefore continuous at 2.

The method by which the lines T, OT, and T,PT, Wege fetind
is apt to cause the student some dithiculty. The lines\ \were fied
as the tangents to second degree curves which Were, {uséd for this
purpose only and not for the actual mterpolatlon\

We shall examine the problems in detail.

The second degree curve passing throu g}\\’\’ O and P is clearly

I
=1 —[—x.\ue-}— ’{ : )Azuu,

d 2
—-x =Au 0+—-2—A 1.

www dbraulibraty org.in

"The slope of the tangent<#{ 0T, 1s found by putting x=1; this
gives m\ Mg+ 3N, L (1)
Similarly, the se@d degrce curve passing through OPQ is
\ ity = +axdu; + #(x 5 I)_\2za1,
and the qloPe\of the tangent T, PT, is therefore
,(§" Auy + $A% = Aug + JA%, + 1A%, ereeen(2)
Hfa\'ring obtained these tangents we dispense with the second
gme curves. We now have to find a third degree curve passing
\through O and P and having the above gradients at those points.
This curve is to be used for the actual interpolation.

Let its equation be
Uy =t +bx+cx? + dxd.

Since the curve passes through P,
H2=1£1 ‘!‘b+6+d.
Le. btctd=uy—u =Auy = Auyg+ A%y, ... (3)
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Since the curve also touches T, OT, and T, PT,

(@’ 1+a;) =b=Au,+ A%, from (1} .o 4

iy fa_g
‘_i""fi-l-x =h2 —/ 3 1AS -
2} b+ 20+ 3d = A+ 5A% - g e (3)
dxe /.-
Solving these equations we obtain King’s osculatory inter-

polation formula:
L2 2 3
r+x x—x

4, =t +xdugH-— = Al — ” ANy e (6)

O
in terms of 1, the value at the™

\

Note: the formula gives uy 4 (not )
beginning of the interval, and the differences of %, \

4. Osculatory form of Everett's formula. N\ ol
Everett’s well-known formula can be readily modified so as 10

produce osculatory interpolation and the stg@n’t is referred to

Mathemnatics for Actuarial Students, Part,'ﬁ? Pp- 147 € 4 for

AN\

details. O
Formula (6) may be written in theform
w;\éﬁ%}:’irauhbﬁgmmpgém .
”1|r=ul‘l‘x(”z‘“%"AE“o}'H'f';_&%‘ 2 (&% -5 to)
iy, 2=
— A +% YL b/ A Id!]_
sty (T ;\,),u]\j p 0
-2 ;;‘ 62(6-— 1)
=ty + QL—E%—I) Aty gt Ay, e (7)

%
> N4

where = lv} |

This dif s from the usual formula 1

.t‘,"o xg(x_l) fs(_f_—_j)

'\ FATT g

u\" w4 . 2 "
'\ ' x(x?—1) HE-1)
instead of  Catd SRSl

3! 3!
use of this formula wil '
follows to give

n having coefficients

; ] be given later, but
An example of it the interpolated

King’s formula can be applied as

values
Ty Hpop Yid and s .
f 1/t we obtain the following

Differencing formula (6) at intervals o
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results, where A as before relates to ditferences of grouped values
and & relates to differences at intervals of 1/1.

gy < L L1 )
Wy T 2 2 P
A, Ay, 1
6%ty = oo (E3) 5 i
i
Aty ]
83”1 = 3 "{;; t A ¢
I 2A\N
When £=3, these become O
31y = 28u, +122% — 01 6A%, | ..,f""‘:
8%y == 04 %1 — 01 A%, A
&y = 024820 '

The four interpolated values can then {e'a\dih' he fitted in, but
in order to check the work by reprofueing u, it 1s necessary to
retain three extra decimal places in the.8’s, Moreover, these differ-
ences have to be re-calculated for.es.r ery interval, so that the oscula-
tory form of Everegb%ﬁ%% Xl -wayally quicker, partieularly if
many values have to be inseste

m\

Example 1. \ }

Given the followihg data, calculate the quinquennial pivotal value of
fas and interpolatEtiie values gy; to g5 by an osculatory formula.

L >

.'!..\‘Ep ulation Deaths Population | Deaths !

Age \§ at 3oth June | in years Age at 3oth June i in years |

l Fe) 1933 193436 1938 i 193436 }
N § S {2) (3 (4} () RO
A . . =
TN e 27 40, 2346 o 35
\Ts 31 [ 204G i 26 41 | 2048 : 35 i
32 2198 ) 29 42| 2186 ¢ 38

33 ) =w2 | 28 43 2073 - 35

34 1 2203 Po2g 44 2000 37

33 1 2226 1 30 45 2028, 38|

36 | 2252 ‘ 30 46 | 191z 39 !
. ) 2176 32 47 | 188 1 40 |
38 1 2324 ‘ 35 48 | 1goh 41

39 | At | 34 49 | 1762 4|
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agex | Qe pivekd
24 ‘00365
29 00387
34 00439
44 -oobos
49 00816
54 ‘01167 N\

To obtain the pivotal value of gy it is first necessary o group the daEB:\..“\'
into the ranges 3236, 3741, €tc. King’s formula, #, = ‘2w, — -008A%My Y,
then gives the graduated pivotal values of the population and cl,c.aplls at

age 39 as follows: s >
&
. . ..005‘. !
'(‘Car;‘:‘l o o(;’fﬁﬁ’m A(2) . avy | STopP | Als) ‘ Al(s)
S N A R Gl © | @ |
34 L o7 ! ,3415‘ . |
. 64_ . I:“: , 25
36 1 ILI35 — 09Iy 171 P9 |
—927 ~N 16 |
44 | 10,208 wyadbraqlibtty qrgin

The adjusted population EZ {I.\“age 39 is therefore
2(1x 1{{5)}— 008 ( —go1}= 2235
and the adjusted deathSarc :
-2 (171) — 008 (% §i=134'27 for the three years or 1142 per annum.

Ve \ud 11442
OO
O T R,
and 3% BT 235 +572
\T}r Tﬁterpolate the required values by the formula
2 x—1)

E{E—1)
z ﬁ_ 2
Uy =¥l t— Ay +Euy + 5 Ay

we proceed as follows:

Value of & o B _-z___‘_ 4 \_6 -8 l
‘ — 016 ‘ —048 ‘ —072 |\ —-0b4 I!
. | |

Value of coefficient
! i
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As these coefficients are all multiples of -008 it is convenient to tabulare
'008A% as follows:

. Table XXXI1I

Age y ! gy X 1aP A fz) | A2 | oAl (3)_|
R N L@
24 | 36_1) I
‘ 22 | e
29 - 387 30 X 249
! | | 52 | D)y |
34 il 439 | 9y
3
39 510 | ! 24 AN gz
| | 95 (&
44 | 603 | 1199 )" 880
| s Y
|4 [ 8o LR 1
: | 357 e
L54 | 167 | PONG N
TabIc XXXIII
._ ------- _ ww{w{(ib_lgl,lllbt}ﬁly{ﬁgln . e . n".“T“
de e TR O | e e
1 @ .(31\ € N B (@
| S —— ——
29 . — i i —
| 30 1 878 3 % 304 | 87496 | !
31 | 17502, — -g12 174:688 . ,
D3z 26897 — 1368 | 262032 i |
RSP I TR ‘ | |
DN — — — @y
| 35\0 102 ‘ — 384 er-616 | 349984 4510600
',3(5* | 204 — 1152 202:848 | 262072 464880 |
\|’g7 306 — 1728 3047292 | 174688 | 478-gbo |
\l’ 38 | 408 | 1536 406464 | 87490 493960
|30 | — P =" T T T |(w1‘3) i
w0 | —rybe - r1gage | 406464 | 525704
oo | 58 | asbyao gopaa | ji0002 |
| 4z | 363 | 792, 355080 | 202848 | 357928 |
43 | 484 —7o40 | 476960 | 101-616 ‘ 578576
’ “ | — _ = — (605) !

(For illustration the full

number of decimal places is retained.)



KING’S SHORT METHOD 271

Ir. performing the actual interpolation only the “x” terms are cal-
culated, since in reverse order they form the “£” terms for the succecding
intorval. Thus the first four items in column (5} of Table XXXIII are
merely the Arst four items of column (4) in reverse order. This is similar
to tlie ordinary use of Everett’s formula: see Example 2 on pp. 735 of
Mathematics for Actuarial Students.

For ages 35-38,  #y =@y X 10% 4= (nX 108,

. - 5 = 5
For ages 40-43, Bty = Ggg X 10%,  Hy=(aa X IO%

5. King’s short method of constructing abridged Life Tables. { b\

For the bencfit of Medical Officers of Health and others interéSted -
in vital statistics the following method was devised for congtelicting
an zhridged mortality table and values of é,. D

First, formulae were required giving the sum of ﬁ’v} values for
successive ages in terms of the values at quinql{:nnial intervals,

From the formula O

2=1) 5 SR,

ux=uo+xalu0+——2

the following formulae were deduqq%zi .

1y byl T e T Hre = 5%%&35‘@15&3%70@%10 ...... (8)
and e

typ+ y.q H e g + 8T 5%

For the initial gropﬁxt\ilése formulae
+ 2Au,— 40% + AL I (10)

+ 8y + 2768%y — 273, ...{0}
fail and were replaced by

Ty Uyt iy —k\'ti.f% tg= 5ty
and O

gt : Al
thyt u?,.%ﬁ:s—i—u_s+ul= sty + 3 — APy +o2A% g (a1)

The..fb%i{ring gives the subsequent process in detail: |
(O \Calculate quinquennial pivotal vs.llue.s of population and
\m‘; “ deaths and hence ¢z 3t quinquennlal mtf.trv:fls.
(ii) Deduce the values of logp, at quinquennial mtenl-'als;. e
(iii) Since l-:)g‘,“px.——-Io~g)g:»$-i—logpwrl +oe -‘ijlogpﬁ_g, calculate
values of logs p, from the values in (ii)- '
(Formula (10) has to be used for the first interval}
(iv) Take a suitable radis for L, and, using the values in (iii),

find logl, at quinquennial intervals. These values will not

extend to the end of the life table and the last values will have
to be inserted by some arbitrary but reasonable method.
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(v) Taking antilags obtain I at quinquennial intervals. Formula
(9) (formula (11) for the first interval) then gives
Zm+1 + zx-f-fl + lx{—s + llr:L-+:,1 + lxi—:‘:
in terms of I, and the differences taken at quinguennial
intervals. (T'his sum of five consecutive values of , at unit
intervals was called by King N 5.)
(vi) By summing the values of Ng.5 from the bottom uptards

1[ . w ‘\
ootam’ " ¢
> L™
T N
L 3 N
at quinquennial intervals and hence N
] &*4
— , "s\
e,= 3 L/l O
g

"The addition of *5 gives the com}pl'&\te‘expectation £

Table XXXIV is an example of i use of the method und is
taken from King’s report on EnglishXLife Tables Nos, 7 and 8.

The initial processes were stadightforward and are not shown.
They were as foll\?{\::s‘?. blf;ru B lfgll:% .%.lf’lg.‘i grouped in the ranges 4-8,
g-13, ... 104-1083 quinquennial pivotal values were obtained for
ages 11 to 101 inclug’:;‘e and the values of —logp, shown in
column (2) calculated,)

Formula (8) thf:&nabled logsp, to be deduced as far as age g1,
but log; pgg and lok; pyo, were also needed. These were inserted as
shown by assutning a constant fourth difference for logp,. Any
other rezj.s@}aﬁlc assumption would have given much the same result.

Coldnynt (7) was obtained by the application of formulae (8) and
(1092: It should be noted that, throughout the work, values at

. q0ifquennial intervals only were used, the Intervening ages being
N Allowed for in the construction of formulae (8) to (11).

'To derive the values of ¢, at quinquennial intervals the work was
as follows:

Column (13) was obtained by means of formulae (g) and (11)
from the values of I, and the differences. Column (14} was then
derived by summing from the bottom upwards and the final column
obtained by dividing the entries in column (14) by the corre-
sponding values of /, and adding -3.
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Table XXXIV '
Ape |T1B0 2@ | a0 l\ B A || e sl 1‘ L |
wiw |l el ewle e ol ® |0 |
T ?Qi ‘ 451 5-00000 | 100,000
P34 | i
16 113 12 660 | 4°99549 98,957
46 —128 :
21l 159 —26 836| -98389 . 97,474\"\
| 20 46 ‘ A
26| 3179 20 | g65| 98053 ! 95,626 !
| 4 8 1O
i3I 219 28 1,222 -g7o<88}_' 93,575
‘ 68 -g ‘ ‘
| 30 287 19 1,590, ~.tg§866 60,920
‘ 87 20 v/ I
417 374 45 AR 194270 8?,640‘
. 132 11 R .
| 46 506 56 ) 2,872 -g2156 83,476‘
. 188 6o » ‘ I |
1] 694 116 Ny 4,020 -89284| 78,134|
304 adh |
26 998 14g| A dbl‘aullbraSﬁHﬁ'T,jj—BSZ‘ss ‘ 71,216 |
448 L 62 | ‘
61| 1,446 g’gé} 8,416 | ‘79442 62,200
654 \\s 198 ‘ )
66§ 2,100 N 404 12,410 | 71026 55317
. 1,059 224 ‘
71| 3,158 O 628 18,895 | -58616| 38,562
(686 77 s
76| 4,884 703 28,717 39721 24958
R 2,391 14 ‘ |
8140235 719 42,001 ‘ 11004 12,884|
“\Y 3,110 533 .
\SéFw,%s 1,252 60,640 | 369003 4,898!
' 4,362 — 3,461 ‘
g1 | 14,707 —2,200 14,116 | 76,504 08363 | 1,212
2,153 10,655 .
g6 | 16,860 8,446 14,116 g7,165) 2317691 20
10,599 24,771
101 | 27,459 11,217 14,116 203,863 | 134604 22
18,887 B
100 130741 °|
T 18

Frasiil -
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Table XXXIV

! . i | !
Age| s | TAO |- 0): 4%(5) | Vo | Sy ., |
|0 9 | G ‘ (12)_|_(13) (W | s :
11 ! IO0,000| ! 497, 3,166,263 ‘ 52016 |
1,033
16| 68,967 460 ‘ 490,521 | 4,669, 159 | 47 68\1
1,493 + 95 =
20 97,474 365 \ 481,018 ; | 4,1;8 6,8l Oy |
1,858 + 122 i
26 95,616 243 | 471 (}96 | 34916
2,101 — 251 N
311 93,315 494 460,026 3\’&4, 96' 3498
i 2,595 — 191 ;
36| 90,920 685 445.974 -,,»64,“o| 3091
! . 1,280 = 199 | N i
41| 87,630 884 420,120 ‘ 2,319,696 | 20g7
' 4,164 - 294’.“’ .
46| 83,476 ‘ ©o1178 401,905 | 1,893,576 ‘ 2318
5342 D 598 ] !
51 ?8,134‘ (’\ém Ly ﬂiral y‘@rj 370,033 | 1,497, 7z| 16,59
36| 71,216 2\008 330,113 | 1,121,038 ‘ 16-24 |
8,926 |~ ~ 39\ ‘ |
61| 62,290 w\ 2047 279,297 | 790,925 ‘ 1320
| ! 10973 + 263 |
66| 51,317 ‘ 4 azw 1782 | 218,846 311,628 | 10747 |
2755 + 933‘ |
71 38,5£§:2§" _ 849 ‘ 15,862 292,782 | 8-0g |
A\ | 13604 +2379 | |
‘ 76 ~.‘%\~h958 —1I330 87,444 | 140,920 6-15|
RN | 12,074 +25358
D[ 12,884 ‘ ~ 4088 38,784 1 53476 | 465 |
W/ | 7,686 + 212
86| 4,898 — 4300 | 12,036 | 14692 | 350
| 3,686 ~1618 ‘
g1 1,212 _! — 2682 ‘ 2,348 ‘ 2,65() 2-()9 |
i 1,004 ‘ — 1864 | !
g6 ‘ 208 — 81 286 ‘ 3081 199
| 186 ; ‘
101 22| ‘ — 164 22 ‘ 22| 150
. 2 | [ ;
100 | °|‘ | | == (
E-]

col. (g} on p. 273,
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6. English Life Table No. 7.

These tables (one for each sex) were based on the population of
England and Wales at the censuses of 1901 and rg11 and the
recorded deaths in the calendar years 1go1-ro inclusive.

The populations of 1901 were supplied for each of the first four
years of age and then in quinquennial groups 5-9, 10-14, etc., with
a final group 100 and over. )

The 1911 figures were available for each year and were groupe
in the same way 28 the 190t figures in order that the mean popilagion
could be found by Waters’s method. Finally the interpolatéd figures
for 100 and over were split into those for ages 100—{@4"3}1(:1 those
for ages 105 and over in the proportions shown by {l}e 1911 Census

d

figures. O
T'he deaths for the ten years were given foreach of the first five
years, then in quinquennial groups up to’zgﬂh’st birthday, and then
in decennial groups 25-34, etc. up ?Q'?‘S:S;]., with a final group
85—g9. For 1go1 1o 1909 the deaths obcentenarians were given age
by age and the deaths for 191Q.3vefe subdivided into the groups
100-104 and 103 and over 11\1”%@]1\9 gpme gﬁ?_glgrt{i)?'n.mSimﬂarly, the
decennial groups were splitdiito QUlnquennlalygro%ps by means of
the figures for the yearg1910-12, which were available for each age
up to 99. Using thé.grouping 5-9, 10-14, ... 100-104 graduated
quinquennial piyo\tﬂ\l values were obtained for ages 12, 17, ... 97
for populations\and deaths and the values of ¢, were deduced.
For os ul:’.u}ory interpolation log (g, + 1) was used instead of g,
and valnéw;ere obtained for ages 17 te 92 inclusive.
I \m\\e"a;:h of the ages © to 4 g, was derived from the records of
bii’ﬂls and deaths, while g, for age 12 had already been obtained as
o«jé\i:;ivotal value. Using the values of g, (not log {g.+ 1)) for ages
N 3,4,12, I’7and 18 the intermediate values wetc found by Lagrange’s
formula, although divided differences would have given the same
result rather more simply.
For old ages log p, was the function operated on. The values for
89, 9o, 91, 92 and g7 were available and, by assuming a constant

fourth difference, the remaining values were easily found.

If-2
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7. English Life Table No. 8.

‘The populations at the 1911 Census were available for each age,
as were the deaths of the years 1910-12 inclusive as far as age gg,
although centenarians were grouped together.

The populations were first grouped as for the 1gor Census so
that they could be brought down to 1st July 1911, the mid-point
of the three years,

They were then grouped for ages 4-8, 913, etc., so as to deal as,
effectively as possible with local mis-statements of age, 'I'he deaths
over age 100 were split into the necessary ranges 100~103,gﬁ\d.\1 04
and over by means of the deaths for 1912, which were ‘available
age by age. RS

Having thus obtained the population and deathg for age-groups
4-8, 9-13, ... 9—103, pivotal values were calodlited for ages 6, 11,
16, ... 96 and g, obtained for these ages. Oscolatory interpolation
produced the values from age 16 to g;{riausive and logp, was
calculated for ages 88, 89, go, 91 and o (the last pivotal value),
Assuming a constant fourth differ ciice as before the table was
completed at the high ages. !ibf';s; \ ﬁj;)l'g-in

¢, was calculated from statistics of births and deaths for each of
the first six years of life and, by using the values of ¢, for ages 4, s,
11, 16 and 1%, the remai;fling values were inserted by Lagrange’s
formula. \\{ /

8. English Life/ Fable No. 9.

The populatibn enumerated at the 162t Census and the deaths
of the yeaf$ Y920—22 were available for each age and, as births and
deaths(eere available for each quarter of the calendar years in-
volyed; the rates of mortality for infantile ages were calculated
‘more accurately than was possible before. The quinquennial

\gr'oupings adopted were 2-6, 7-11, ... g2-¢6. Pivotal values of
populations and deaths were obtained and osculatory interpolation
produced rates for ages 14 to 84 inclusive. _ _

As an alternative the crude values of g, were caleulated from the
data; quinquennial groups 5-9, 10-14, etc. were adopted to reduce
irregularities. The same process as above was then applied to the
grouped values of g, and the rates obtained were very similar to
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those produced by operating on populations and deaths separately.
“or the sake of continuity these latter rates were adopted.

"The rates for ages o to 5 were calculated from the statistics of
births and deaths. The values for ages 85 and over were obtained
by a Gompertz graduation in which, since p; = Be®, the values of
logp,, are in geometric progression., -

Takin log10Ps_ . the ratio 7410 was used to construct the
logyoPes
successive values logy, pes 10819 s €tc. and the values of g, were,
deduced. : ;
For ages 6 to 13 it was assumed that O

g, =a+brtfex{x— 1)+ e (x— 1} {x—2), N
and the constants were found from the values of g5, gondis 2nd 4y

already obtained.

9. English Life Table No. 10, R
After various trials it was found that the proupings 5-9, 10-14, €1C.

were as good as any, and rates of mortality were found in the usual

way for ages 17 t0 87 indusia*’\%ﬂ;éﬁa@%]@kyﬁ(ﬁ: giqna Gompertz
ife.

curve was used to extend the tableto the end of n this method

celog py, Ke : _
The rates for ages €0, 5 were caleulated from records of births
for which more detailed

and deaths. Special@ftention was paid to gy
data were availablé’
" For ages 6\’:5“16 special methods had to be used because of the
rapid cha@es‘in the birth-rates after the war of 1914-18. As a result

Iready obtained had to be modified to

the Valfj%:S for ages 17 to 222 .
prodﬁéé a smooth prOgression. The whole question was however
ong of construction rather than graduation.

cologpes ., -4o for maje@‘“and 1-42 for females,

disadvantages of the method.

le to discuss on general lines the merits and
demerits of the method of g_raduated quinquennial pivotal vatucs
and osculatory interpolation. The method was devisec.l to meet a
special problem and has proved so successful that it has been

modified only in detail,

10. Advantages and
It is hardly possib

oA\

Q)
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The weak graduating power of the formula renders it unsuitabie
for many purposes, particularly if a high degree of smoothness is
essential. In assessing any method of graduation however it is
only fair to take into account the type of data with which it was
intended to deal.
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EXAMPLES 10

I. From the following dafafind values of g, for ages 42 to &7 by means
of graduated quinquem{él' ‘Pivotal valucs and osculatory interpolation:

Pugsgmgy? | B 1o an s toais Dec vy

birff'ﬁ:}‘{? d Mean population | Deaths :

334 % 36,466 | 294 |
AN3539 i 48,034 . 474 .

A g0-44 55,100 | 783 |

A 45 56,623 1098 ,

QO s0-54 49,684 1440 |

55-59 i 37,664 | 1749 |

Go—64 |‘ 24,139 | 1839 i

6569 |: 16,511 | 2043 i

i 7074 : 11,881 : 2445 |

2. Without making use of the interpolated rates found in the question
above find a,;.75' at 33 per cent intcrest from the data of that question
and compare it with the value based on the interpolated rates,
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3. From the undernoted data relating to the period 193436 calculate
an approximate value of ¢g,. 5 using King's short method.

Age;group Mean bopulation Deaths _?
50-33 ’ 68,400 2400
53-56 64,200 2G40
56-59 59,600 3360
5962 51,200 17350 L <\
62-63 44,700 4350 a0
65-68 37,600 4650 '\,?}
6871 30,100 4980 O
7174 22,200 5 9@\‘
7477 16,400 o_e’
w280 ..'ﬁ_xo,zoo 1 {Q\,ﬁ 680
2>\>
N\
b
{ W
Q7
NN

\ts;\;irww_d braulibrary.org.in



The ordinate

The arca to the left of the ordinate at the point & (the distribution

function) is

the sign of x does not affect ¥ while #(

yor p(x)=

Vaw

APPENDIX

Table 1. Values of the ordinates and the distribution
Junction for the Normal Curve.

A 2w

x
f e
—

The values are tabulated for pesitive values of x only;4change in

N\

A ¢
2 AN
NS ©

\

—x):x—F'(,@}"\f

s temre | F@ | s [l P
| o0 ©-36804 050000 25 k @3!753 | ©'99379 |
| o1 ©'34603 053983 26 PNBo1358 | 99534
i oz 039104 o-579260 297 (Wororng2 o9gbs3 |
. o3 o38130 o01791 3-'8 \ 000702 ] 003744
I oo 0-36827 065542 *209 oo0sas | oga8iz |
o3 O 353 dbl(ﬁgbhbr’qi }’3%'8 N g-00443 ogy8es |
o-b or33322 o 123.75 1 o 003@; ©°G9993 .l
o7 031225 oF 00023 00031
o8 a28060 %7, 4. ] C00I%2 o'0ggsz |
oy o 26609 :\@‘8 1504 3 4. ] Q0123 Rt |
1o 024197\ | 084134 33 | oooely 099977 |
I 3 ¢ o 21785 086433 36 ] [WatateliB e 099584 _:
Doz [ o Podig 085493 37 | oooc4a | oage8g
| 13 219137 o'go32zo 38 | oroooz2g 09993
i T4 NSIL4973 91924 30 E ©'00020 ©'90955
g\ o12952 093319 40 l ©00013 095997
! “r’:f) | o II0Y2 604520 4'1 l [eatatelats] G993 |
AT l 0'0y403 \ 005543 42 000006 00999y
m~\J -8 oo7sgs | ogbie7 43 QDO004. 009999 |
\ ’1 19 o0bsbz | 097128 44 0'00002 099999 .
20 005399 i og7723 45 000002
Uz [ 004398 098214 4 6 ©o0001
2% ©-03347 o860 ‘ 000001
2+3 o02833 o-g8gz8 0'00000
24 ‘ 062239 099180 |

f

For intermediate values second difference interpolation is usually
sufficient although on occasions third differences should be allowed

for if great accuracy is required,
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From the above table the following values may be obtained:

£ (x) x F{x) ®
Rals) ] — 3009 ‘q09 3ego
"005 —2576 995 2576
‘oro —z2-326 QGO 2-926
025 —1-gbo ‘g75 1-g6o
! ‘052 — 1645 “ggo 1645
25 ol 75 0674

%,

\J
~o‘\®
S

Nl .

‘\&;‘;\\wa_d braulibrary.org.in



Table I1. Table of values of %y carresponding to critical values o f

I = .
P —_—— [‘ x'si‘f“-l e“é-'l!,‘ dx
1
zéfF(Ef)v o
! Deprees of freedom
]udgemcnt | R e — —
i ! 1 5 4 0@ . 13 Rt
"“Much tao probuble ** ‘9‘-)9: - i = T - o
i “Too probable ™ | ‘90 | -oooz ‘55 256 33 | Kaf.
“Rather too probable 95 | -oog | T4 304 726 10-85!
| S 4S5 4357 934r raq, 103y
HOf douhiful improbability o5 ! 384 | 1107, 1831 z500' 3197 g
" Improbable” ot 6y 1509| z32r 30758 37578
- “Very improbable oor|re83 i 2035z 297307 3770, 4380wk
. — -~ :
I H 1 .
| P 35 4 a5 | oso A3 fo b5
e — . | _ — . . _:_; N— J— - .'
i“Much tun probable ™ 1990 1361 1681! 202 2583 2701 30030 3418
["“Too probable 99 G IT33 | 2153 2520 2066|3292 3683 407781
[ Rath S - I I T s Sy L T i
ather too probable a5 |22'19 26230 30 34N 8449 3868 qzp1' a7y I7|

I's 3450 3050 WSO 4oz saso, sorse 650!

i“Ofdoubtfulimprobabilit_\-'”:'05’ !4g-5z ‘ 55-47,|=5X-375 73z 73'03! ‘;-S"S'gl 84541
!“]rnptobable” ot 5653 1 6288\ 6913 7535, Sran Bysd 9363
“Very improbahble 001 64794 _' RN 7843 8502’ 0154 ] 97‘98|104'37|
i - - — - - ; 1

| P 70 75 8o | 85 go |, us | 100
Nt

. “Much too probable”
: *"Too probable”™

ypER NS ST | 90| 5203 670’ 6ot
_ AL
i * Rather too prohable

52870 5606 6108 G52z, 69'39'
O3 140 | 5577 Gorry 6447 6885, 7324 77°63]
8 | fg-5o0 74‘5°i ;79-50I 8130 89-30i c)apsolI 9%50
T18:q7] 124°00

“Oug ..”_:L&a
wvibraflil

; -y A :
HOf doubtfin? unpl'obabiliiy"i'.:c}s Y025 9593 101°59 10724 11286

CImprobable” ['or | gofig |105-6o|'111-54.|II7'+5|123'33;12E}‘10 135’025
i “Very improhable ™ N oer 11091 _117‘00'123‘24'129'45_135-62'141‘765147‘87|
-' :‘:\’ |P 05 | 11 ! 115|120i725'1305135'
“Much too prebldlor | T — = — o | P
¢ " Much too prebgble 900" G4-6o | 6834 va'51 7o 80-51| 8454 ?-‘S'S‘J:
i - Too probiile 99| 3357 7778) 8200] 8622 gaso, 497! voros’
;‘Rather{:ao\pmbablc” 95 | 8207 | 8631 90-96| 935421 90go 10.1.-38!108'875
! \" |5 | 10450 104°30 114-5_0:119‘5o|124'50i129'50 T34°59
! :‘ Qf\:d,oubtful improbabﬂity”l ©5 12963 135191 14074 | 14628 151-8:1 _' 15733 16283
| Nmprobahle TOT 408y |I46'63I152'4I|I58'17|163'91'|169'64=1?5'36!
i “Very improbabie ™ 00T 153793 |160-oo'166‘o4 172'05_T78'04_134‘°I!189'96i

EP| 140 ;l 145 | 150 | 153 | 160 _| 165 | 170 1
. - = — Y ____ T — — T _‘!
“Much too probable™ 0001 5266 ) 96-?4|100-84I104-95|109‘08|113'22 11738
i “Too probable” 90 |103‘35 1107-65'111-98irx6-3ri120-66 125011 129°37°
. Rather too probahie” 95 12338 11780 12241 126-94.131‘47|136'02|140'57I
i ’ i

;5 [139°50 144°501 14950 15450 13050 164'50, 16950,

' Of doubtful improbability” o5 | 16833 117382 170-30: 18477 | 190723, 70360 (2014,

*Improbable” ser xBiob 18673 | 192°43 19810 20376 I 200740 | 215°04
\ “Very improbable ‘oot | 195-8g !201‘81 | 20771 | 21360 ' 210°47 22533 | 23117_.

Note: Seal has pointed out that the values [or = 20 are only approximate. Accurate X2
tables are available for /=10, 50, 60, 70, 8o, yo and 100 in Biometrika, xxx11, 1941, p. 197
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